
World of Physics World-of-Physics - 2016-1-CY01-KA201-017371

Erasmus+

Project funded by: Erasmus+ / Key Action 2 - Cooperation for innovation and

the exchange of good practices, Strategic Partnerships for school education

(European Commission, EACEA)

TECHNICAL GUIDE

Communication Between Objects and their Parts

World of Physics World-of-Physics - 2016-1-CY01-KA201-017371

 2

1. Introduction

One of the most useful features of the LSL scripting language are the functions and

events that allow different objects to communicate between them. You can use this

feature to design and implement very complex behaviours!

There are two different cases that you need this:

• Two different objects must coordinate so they need to be informed when

something happens related to the other object. For example when the user

clicks a switch object, a lamp (other object) needs to turn on.

• Parts of complex object (linked set of basic prims) need to cooperate. For

example when you click on the power button of a TV Monitor, the screen (part

of the same object) turns on.

In the first case the way to implement it is using messages through chat channels.

Opensim apart from the public chat channel which is used when an avatar writes a

message in chat, has a very large number of channels that can be used to send

messages to. Each channel is associated with an integer value and the range of

available channels is -2147483648 through 2147483647. Using scripts you can

instruct each separate object or parts of it to wait for messages in one or more of

these channels. When a message is sent in a channel that the object is listening on,

an event triggers and the object can perform some predetermined actions. So, in the

example we mentioned, the lamp object should wait for a message (e.g “turn_on”) in

a specific channel (e.g channel 333). The switch object when clicked should send the

required message (“turn_on”) to that specific channel (channel 333) thus triggering

the lamp to perform the necessary script commands to turn on.

In the second case, the approach is even easier. Parts of a linked set can be set to

wait for messages from other parts of the same set (no channel needs to be

specified). Additionally parts of a linked set can send messages to another part or

parts of the same object. Each part of a linked set has a unique link number id that

World of Physics World-of-Physics - 2016-1-CY01-KA201-017371

 3

can help you identify where to send the message. Keep in mind however that one of

the parts of the linked set is considered the root prim and can use a specific set of

script commands that allow it to directly change properties of the child prims, so you

may not even have to send messages to them! In our example that we mentioned

earlier the TV screen should wait for a specific message (e.g. “turn_on”) from other

parts of the TV. The button prim just needs to send the message (“turn_on”) to all

other parts or specifically to the screen part (we can get the link number that

identifies it from the build menu when we select it).

2. Technical Details

In the case that different objects need to communicate through chat channels we use

the following:

Function: integer llListen(integer channel, string name, key id, string msg);

‘llListen’ is the function you need in order to set one object to wait for specific

messages, from specific channels. Usually you run this function in a

state_entry event but you may want to dynamicaly start and stop listening to

channels (also check llListenRemove in that case).

Event: listen(integer channel, string name, key id, string message){ ; }

‘listen’ is the event that will be triggered when a message is indeed sent in the

channels the object is listening on. Inside the block of the event you may want

to check the value of the message and perform the required actions

Function: llSay(integer channel, string msg);

‘llSay’ is the function other objects will have to use to send messages to the

specific channel that you have specified so the above mentioned ‘listen’ event

will trigger. Notice that llSay has a specific range (20 meters) that it can be

transmitted. You may have alternative functions for greater disatances such as

llShout or llRegionSay.

http://wiki.secondlife.com/wiki/Category:LSL_Functions
http://wiki.secondlife.com/wiki/Integer
http://wiki.secondlife.com/wiki/Integer
http://wiki.secondlife.com/wiki/String
http://wiki.secondlife.com/wiki/Key
http://wiki.secondlife.com/wiki/String
http://wiki.secondlife.com/wiki/Category:LSL_Events
http://wiki.secondlife.com/wiki/Integer
http://wiki.secondlife.com/wiki/String
http://wiki.secondlife.com/wiki/Key
http://wiki.secondlife.com/wiki/String
http://wiki.secondlife.com/wiki/Category:LSL_Functions
http://wiki.secondlife.com/wiki/Integer
http://wiki.secondlife.com/wiki/String

World of Physics World-of-Physics - 2016-1-CY01-KA201-017371

 4

In the case that different parts of the same object (linked set of prims) need to

communicate we use the following:

Event: link_message(integer sender_num, integer num, string str, key id){ ; }

‘link_message’ is the event that will be triggered when a message is sent from

one of the other parts of the same object.

Function: llMessageLinked(integer link, integer num, string str, key id);

‘llMessageLinked’ is the function a part of an object can use to send

messages to another part or parts of the object, triggering their ‘link_message’

event.

We have used these two approaches in many cases in WOP and you can find the

scripts we used and more instructions in the "Scripts Section" here:

http://aigroup.ceid.upatras.gr/wop-oer/scripts.html

3. References/Links

http://aigroup.ceid.upatras.gr/wop-oer/scripts.html

http://wiki.secondlife.com/wiki/Chat_channel

http://wiki.secondlife.com/wiki/LlListen

http://wiki.secondlife.com/wiki/LlSay

http://wiki.secondlife.com/wiki/Listen

http://wiki.secondlife.com/wiki/LlMessageLinked

http://wiki.secondlife.com/wiki/Link_message

http://wiki.secondlife.com/wiki/Category:LSL_Events
http://wiki.secondlife.com/wiki/Integer
http://wiki.secondlife.com/wiki/Integer
http://wiki.secondlife.com/wiki/String
http://wiki.secondlife.com/wiki/Key
http://wiki.secondlife.com/wiki/Category:LSL_Functions
http://wiki.secondlife.com/wiki/Integer
http://wiki.secondlife.com/wiki/Integer
http://wiki.secondlife.com/wiki/String
http://wiki.secondlife.com/wiki/Key
http://aigroup.ceid.upatras.gr/wop-oer/scripts.html
http://aigroup.ceid.upatras.gr/wop-oer/scripts.html
http://wiki.secondlife.com/wiki/Chat_channel
http://wiki.secondlife.com/wiki/LlListen
http://wiki.secondlife.com/wiki/LlSay
http://wiki.secondlife.com/wiki/Listen
http://wiki.secondlife.com/wiki/LlMessageLinked
http://wiki.secondlife.com/wiki/Link_message

