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Abstract. In this paper, we first present and compare existing categorization schemes for neuro-symbolic
approaches. We then stress the point that not all hybrid neuro-symbolic approaches can be
accommodated by existing categories. Such a case is rule-based neuro-symbolic approaches that propose
a unified knowledge representation scheme suitable for use in expert systems. That kind of integrated
schemes have the two component approaches tightly and indistinguishably integrated, offer an
interactive inference engine and can provide explanations. Therefore, we introduce a new category of
neuro-symbolic integrations, namely ‘representational integrations’. Furthermore, two sub-categories of
representational integrations are distinguished, based on which of the two component approaches of the
integrations is given pre-eminence. Representative approaches as well as advantages and disadvantages
of both sub-categories are discussed.
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1 Introduction

The integration of different knowledge representation methods is a very active research area in Artificial
Intelligence. The aim is to create hybrid formalisms that benefit from each of their components. It is
generally believed that complex problems can be easier solved with hybrid systems.

One of the most popular types of integration is the combination of symbolic and connectionist
approaches. For example, efforts to combine symbolic rules and neural networks have yielded advanced
knowledge representation formalisms (Bookman and Sun 1993, Fu 1994, Medsker 1994 and 1995; Hilario
1997, Sun and Alexandre 1997, McGarry et al. 1999; Wermter and Sun 2000, Cloete and Zurada 2000,
Garcez et al. 2002). The success of these hybrid methods is based on the fact that the two integrated
formalisms have complementary advantages and disadvantages.

Symbolic rules offer a number of advantages for knowledge representation such as, naturalness,
modularity and ease of explanation. Expert systems are the most popular rule-based applications. They
provide an interactive inference mechanism, which guides the user in supplying input values, and an
explanation mechanism, which justifies the reached conclusions. However, symbolic rules have also some
deficiencies. The most important disadvantage is the difficulty in acquiring rules, a problem known as the
knowledge acquisition bottleneck (Gonzalez and Dankel 1993).

Neural networks represent a totally different approach to problem solving, known as connectionism (e.g.
Gallant 1993). Some advantages of neural networks are their ability to obtain their knowledge from training
examples (reducing the interaction with the experts), their high level of efficiency and their ability to
represent complex and imprecise knowledge. Main drawbacks, compared to symbolic rules, are the lack of
naturalness and modularity and the difficulty (if not impossibility) in providing explanations.

The integration of symbolic rules and neural networks can result into various neuro-symbolic
representations. Most of them give pre-eminence to the connectionist approach, hence do not provide the
functionalities required by an expert system, like interactive inference and generation of explanations.

* The order is alphabetical



Various categorization schemes for neuro-symbolic approaches have been recently presented (Medsker
1994, Hilario 1997, McGarry et al. 1999). Due to the richness and the variety of integration methods, not all
hybrid approaches can be fully accommodated by existing categorization schemes. Such a case involves
certain hybrid approaches that offer a unified neuro-symbolic knowledge representation scheme, which
provides the basic functions of expert systems. This paper focuses on these approaches. Two categories of
such approaches are distinguished: one giving pre-eminence to connectionist and one giving pre-eminence to
the symbolic framework. The systems of the second category are proven to be more advantageous than the
systems of the first category, as far as expert systems functionalities are concerned. Those two categories
constitute a new more general category of integrated systems, called ‘representational integrations’.

This paper is organized as follows. Section 2 discusses background knowledge focusing on the
advantages and disadvantages of symbolic rules and neural networks. In Section 3, a critical overview of
existing categorization schemes is made. Section 4 presents rule-based neuro-symbolic integrations for
knowledge representation in expert systems, which do not exactly fit into the existing categories, and
introduces a new category. Finally, section 5 concludes the paper.

2 Knowledge Representation and Expert Systems

2.1 Characteristics of Expert Systems

A knowledge representation (KR) scheme (or formalism or language) is the basis of any expert system (ES).
There is no ES without a KR scheme, which is used to represent the knowledge involved in the ES and
perform inferences. We can distinguish, from a technical point of view, two main aspects of any KR scheme,
its syntax and its inference mechanism (Reichgelt 1991). The syntax (or notation) of a KR scheme refers to
the explicit way it expresses knowledge (or information). There are various forms of syntax, ranging from
symbol or text based forms (e.g. logic-based formalisms) to diagrammatic forms (e.g. semantic nets). Of
course, the syntax of a KR scheme is accompanied by some semantics, which gives meaning to the
expressions of the scheme. The explicitly expressed knowledge constitutes the knowledge base (KB) of the
ES. The inference mechanism of a KR scheme refers to the way it derives knowledge, i.e. makes explicit
knowledge which is implicit in the KB.

ESs are typically used for problem solving, by imitating the way a human expert does it (Jackson 1999).
The main parts of a typical expert system are illustrated in Figure 1. The inference engine (IE), which
implements the inference mechanism of the employed KR scheme, uses the knowledge contained in the
knowledge base (KB) as well as any known data (e.g. facts) concerning the problem at hand. The known
data, which is either initial data supplied to the system by the user at the beginning of an inference process or
intermediate/final conclusions reached by the system, is stored into the working memory. The inference
engine initially takes a few (or even none) input values from the user. When known data does not suffice for
drawing conclusions, IE focuses on unknown inputs that seem to be most relevant (or important) to the
inference process at hand and queries the user to supply further input data. The explanation mechanism
provides explanations regarding the conclusions reached by the IE.
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Figure 1. The basic structure of an expert system



An expert system has a number of characteristics that distinguish it from other intelligent systems used
for problem solving:

e  Separation of knowledge from its use. KB represents the domain knowledge. IE is separate from KB.
IE implements the way knowledge is used and is domain independent. This independency leads to a
modular structure (see Fig. 1).

e Interactive inferences. The system halts at certain points during inferences to ask for input data from
the user. This means that not all available input data may be needed during an inference. This also
leads to an interactive and efficient way of acquiring data from the user.

e Provision of explanations. An expert system should be able to explain at least how its conclusions
have been reached.

These characteristics could be considered as requirements for an intelligent system to be an expert system.

2.2 Symbolic Rules

The most popular KR scheme used in ESs is production or symbolic rules (Buchanan and Shortliffe 1984).
The popularity of symbolic rules mainly stems from their naturalness, which facilitates comprehension of
the encompassed knowledge. The basic syntax of a rule is the following:

if <conditions>
then <conclusion>

where <conditions> represents a number of conditions and <conclusion> represents the conclusion that will
be derived when the conditions are satisfied. The conditions are combined with one or more of the logical
operators ‘and’, ‘or’ and ‘not’. The conclusion of a rule can be reached when the logical function connecting
its conditions results to true. When it happens, the rule is said to fire.

Reasoning with rules is based on handling symbols, which represent concepts. Therefore, inference is
based on the so-called symbolic computation. There are two main inference methods: backward chaining
and forward chaining. The former is guided by the goals, whereas the latter by the data.

Symbolic rules, as a knowledge representation formalism, have several advantages as well as some
significant disadvantages (Reichgelt 1991, Gonzalez and Dankel 1993, McGarry et al. 1999).

The main advantages of rules are:

e Naturalness. Rules are a simple knowledge representation method with a high level of
comprehensibility. It is easy to comprehend the knowledge encompassed in a rule. Rules emulate
the expert’s way of thinking in a natural way.

e Modularity. Each rule is a discrete, autonomous knowledge unit that can be easily inserted in or
removed from a knowledge base, without requiring any other change. This greatly facilitates
incremental development of a rule base.

e Provision of explanations. Rules can easily provide explanations for the reached conclusions. A
simple backward tracing of the fired rules involved in the solution may give a sufficient form of
explanation. This feature of symbolic rules is a direct consequent of their naturalness and
modularity.

o Knowledge interoperability. Naturalness and modularity of rules enable transfer of knowledge
between systems used in closely related application domains.

The main disadvantages of rules are:

¢ Knowledge acquisition bottleneck. The standard way of acquiring rules through interviews with
experts is cumbersome. The main reason for this is the inability of the expert to express his/her
knowledge. Therefore, the acquired knowledge may not be complete or even correct. An alternative
way to acquire knowledge in the form of symbolic rules is the use of machine learning techniques,
like decision trees. Those methods produce rules from existing training examples. However, it is
not certain that the available set of examples covers the whole domain (e.g. exception situations)
and thus the produced rule set may not be complete.

e Brittleness of rules. It is not possible to draw conclusions from rules when there are missing values
in their input data (conditions). In addition, rules do not perform well in cases of unexpected input
values or combinations of values.

¢ Inference efficiency. In certain cases, the performance of the inference engine is not the desired one,
especially in very large rule bases. Rule-based systems may face the scalability problem in
inference.



o Difficulty in maintenance of large rule bases. The maintanace of rule bases is a difficult process as
the size of the rule base increases. The rule base may encompass problematic rules, such as
redundant rules, conflicting rules, rules with redundant or missing conditions, missing rules
required in the inference process. In order to deal with such problems, complex verification and
validation methods are required.

e Empirical knowledge is not exploited. In several application domains there are available datasets
with examples of solved problems. This available data cannot be taken into consideration by rule-
based systems. However, they can contribute decisively in the inference process as they may
represent special cases or exceptions not included in rules.

2.3 Artificial Neural Networks

An artificial neural network (or simply neural net) is a parallel and distributed structure (see Fig. 2). A
neural net consists of a number of interconnected nodes, called neurons. There are weights attached to the
connections between neurons: each connection from a neuron U; to a neuron U; is associated with a numerical
weight Wij, which represents the influence of U to U;. Each neuron has also a weight attached to itself, called
the bias. Each neuron acts as a local processor, which computes its output (connection) (U;) based on the
weighted sum of (the values of) its input connections (u;, U,, ..., Uy) and an activation function f (see Fig. 3).
The activation function may be of various types, e.g. a threshold or a sigmoid function. The connection
weights and the structure of a neural net define its behavior.
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Figure 2. A feedforward neural net
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Figure 3. The computational model of a neuron

The most popular neural net class is feedforward nets, which are nets that do not contain cycles. They are
usually organized in layers. So, we distinguish between the input layer, intermediate layer(s) and output
layer (see Fig. 2). Input layer consists of input neurons (illustrated as rectangles in Fig. 3), which are pseudo-
neurons, are used to transfer externally given values to neurons at further layer(s), do not perform any
computation and are taken as the inputs of the network. The outputs of the neurons at the output layer are



taken as the outputs of the network. Intermediate neurons are used for intermediate computations and are
often called hidden neurons.

A neural net can store empirical knowledge and serve as the knowledge base of a classification expert
system. Empirical knowledge comes in the form of training examples. Each example consists of input values
and the corresponding correct output. They are used to ‘train’ the net, i.e. to calculate the weights so that, the
training examples are correctly classified (i.e. the combination of the inputs in each example produces the
specified output). This is called the supervised learning model (the other is called the unsupervised learning
model, where no correct outputs are specified). There are several training algorithms for supervised learning.
A well known such training algorithm is back-propagation. Thus, neural nets are representatives of
empirical machine learning systems. Empirical learning usually requires a large, but possibly incomplete,
training set from which they can generalize. They may also need some domain knowledge such as
information regarding the most relevant features of the training examples as well as the values they can take.

Knowledge can be represented in a neural net via its topology and its weights, if some semantics is
attached to neurons and the activation values. For example, semantics may include associations between
concepts of the problem and neurons of the network. We can say that the syntax of a neural net is of
diagrammatic type. Inference in a neural net is not of symbolic nature, as in symbolic rules, but of numerical
nature, and constitutes in the computation of its output(s). Hence, inference in neural nets is based on
numeric or sub-symbolic computation.

As symbolic rules, neural nets also have a number of advantages as well as a number of disadvantages
(Reichgelt 1991, Gonzalez and Dankel 1993, McGarry et al. 1999). The main advantages of neural networks
are:

e Ability to learn from training examples. Neural networks can learn the knowledge contained in
training examples, which can be easily available in several applications. They transform the
knowledge in the examples into a compact form of a network topology and corresponding weights.

e High performance level. The output of a neural net is quite efficiently computed, since it is based
on numerical calculations (soft computing).

e Ability to generalize. Neural nets may compute the correct output from input values combinations
not present in the training set. Neural networks generalize better than other methods of empirical
learning.

e Robust output computation. A neural net can compute its output(s) even when there is missing or
noisy input data.

The disadvantages of neural nets come from two sources: the fact that they are empirical learning
systems and their peculiar nature. The disadvantages that are common to other methods of empirical learning
as well are:

e Incomplete or unavailable training set. The training set may not represent the whole domain (e.g.
certain exceptions). In certain applications there may not be an available set of training examples.

o Difficulty in feature selection. The features/attributes used in the examples must be carefully
chosen. Certain domain knowledge is required in order to discern the relevant from the irrelevant
features. The existence of irrelevant features may negatively affect the learning process.

e Existing rule bases cannot be directly exploited. Available domain knowledge in the form of
symbolic rules cannot not be exploited in a direct way.

Disadvantages due to the nature of neural networks are:

e Training time and convergence problems. The required training time may be extensive and
convergence to an acceptable solution is not always assured.

e Initialization problems. The initialization of the weights may play an important role in the training
process leading to different solutions. Usually, weights are initialized to random numbers belonging
to small intervals. However, there is no way of making an initialization valid for all applications.

e Topology design problems. Determination of the neural network topology (such as finding the
required number of hidden nodes) is done empirically (on a trial-and-error basis). There is no way
of choosing a good topology for a neural network regardless of the application.

e Black box semantics. It is difficult to comprehend the knowledge encompassed in a neural network.
It is difficult to associate the weights and the nodes of the neural network with specific domain
concepts due to the fact that the knowledge of the training examples has been distributed over the
whole network. Therefore, a neural network cannot be decomposed into components and form a
modular structure. So, incremental development of a neural knowledge base is rather impossible. A
further negative consequence of the black box semantics of neural nets is the difficulty in
transferring the knowledge of a trained neural net to other related application domains.



e Explanations cannot be provided. Due to the above, provision of explanations for the computed
output is almost impossible. In some applications, provision of explanations may not be required,
but in others it is a prerequisite. The comprehension of the knowledge contained in neural networks
can be achieved by rule extraction methods (Andrews et al. 1995, Palade et al. 2001). However, the
extracted rules may not faithfully represent the behavior of the neural net.

3  Categorizing Neuro-symbolic Integrations: A critical overview

The frequent use of rules and neural networks for the development of intelligent systems as well as the fact
that their advantages and disadvantages are complementary led to the development of hybrid systems
integrating both approaches. Most of those approaches have successfully been applied to practical
applications. Moreover, several hybrid approaches constitute general methodologies that can be applied to
various application domains. Therefore, a systematic categorization of systems/approaches integrating rules
and neural nets would be of great value for system designers.

There has been more than one effort to categorize approaches integrating symbolic rules and neural nets.
Those efforts attempt to specify the particular characteristics of the hybrid systems such as, the types of the
tasks they perform and the degree of interconnection-integration between the different components. Given
the great number of hybrid systems developed, it is not an easy task to specify all the characteristics of the
hybrid systems from all points of view. A first, rather simple, categorization is that of Medsker (Medsker
1995). Two more systematic categorization schemes are the ones presented in (Hilario 1997) and (McGarry
et al. 1999).

Medsker’s scheme categorizes the hybrid systems based on the interconnection degree between the
component approaches (neural networks and expert systems) without taking into consideration other
parameters. Five categories of hybrid systems are specified in the scheme: standalone, transformational,
loosely coupled, tightly coupled, fully integrated. From those five categories, only the last three describe
actually hybrid systems. In the case of standalone systems, there is no substantial hybridism, given that the
different components are discrete and without any interaction between them. Also, the transformational
model does not refer to hybrid systems, as it merely examines the most efficient implementation method
through duplication, that is, by constructing a neural network and a rule-based system. The remaining three
categories include systems in which there is an interaction between the incorporated components. In the
loosely coupled systems, communication between the different components is performed by using shared
files, in the tightly coupled models by using shared memory structures and in fully integrated models by
using shared memory structures and knowledge representations.

In the categorization scheme proposed by Hilario (Fig. 4) there are two basic categories of integrated
systems: the unified and the hybrid approach. The unified approach assumes that no symbolic structures and
processes are needed, considering that all symbolic functions can be implemented by neural structures and
functions. There are two basic trends in the unified approach: the Neuronal Symbol Processing and the
Connectionist (or Neural) Symbol Processing.

The first trend is more related to the real biological neurons (that’s where the term neuronal came from)
and stems from the assumption that all cognitive processes can be explained via biological terms.
Essentially, it follows a bottom-up approach starting from the biological neuron. The specific trend does not
seem to be quite mature yet.

The second trend is not directly related to biology and uses artificial neural networks for the
implementation of complex symbolic processes. This specific trend has given rise to important results in
logic and automated reasoning (e.g. Touretzky and Hinton 1988, Dolan and Smolensky 1989, Samad 1992,
Mani and Shastri 1993, Sun 1994, Ajjanagadde and Shastri 1995). An important problem that had to be dealt
with is variable binding. There are three discrete categories of this trend: localist, distributed and combined
localist-distributed. In the localist approaches, there is a one-to-one correspondence between each node of
the neural network and the symbolic concepts. The main disadvantage of this approach is that the network
size increases as the number of symbolic concepts increases. The distributed approach, on the contrary,
stores knowledge to a number of nodes and remedies several deficiencies of the localist approach. Finally,
the third approach (i.e. combined localist-distributed) attempts to combine the advantages of the localist and
distributed approaches.

The hybrid approach is discerned into two subcategories: trandlational approach and functional
approach. The translational approach is based on neural networks, which have been derived by combining
domain knowledge (i.e. symbolic rules or automata) and training examples. In this approach, the domain
knowledge is initially transformed into a neural network, which is then trained by using training examples.



The final network contains a refined version of the domain knowledge (Fu 1993, Mahoney and Mooney
1993, Towell and Shavlik 1994, Omlin and Giles 1996). The initial domain knowledge can be in various
forms such as propositional rules (Towell and Shavlik 1994), certainty factor rules (Fu 1993), automata
(Omlin and Giles 1996), etc. Well-known representatives of this approach are the so-called knowledge-based
neural networks (KBNNs) (Fu 1993, Towell and Shavlik 1994). The use of domain knowledge for the
creation of the initial neural network offers some advantages compared to classical neural networks. On the
one hand, the training process becomes easier, because most of the nodes and the connections are defined
from the beginning, weights are initialized properly and smaller training sets are required compared to
classical neural networks. On the other hand, the final neural network is sparser compared to classical neural
networks and surpasses them in naturalness, since most nodes correspond to symbolic concepts of the
domain. Furthermore, this approach deals with problems found in rule-based systems, as far as completeness
and correctness are concerned. Therefore, the final neural network is an indirect solution to the knowledge
acquisition bottleneck. Compared to symbolic rules, however, it is inferior as far as naturalness is concerned
(to a lesser or greater degree), because it gives preeminence to the neural component. In some cases, the
domain knowledge incorporated into the final neural network is extracted from it, in order to better
comprehend the encompassed knowledge (Towell and Shavlik, 1993, Giles and Omlin 1993).
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Figure 4. Hilario’s categorization scheme

In functional approaches, rules and neural networks constitute discrete components of the hybrid system.
They fully encompass functions of symbolic rules and neural networks, given that there is a cooperation and
interaction between the discrete components. Functional approaches can be distinguished into further
categories based on two parameters: interrelation degree and information flow.

According to the interconnection degree, there can be two types of functional approaches: the ones
having a loose interconnection and the ones having a tight interconnection. In case of loose interconnection,
each component works individually at a local level and the synergy of the components is accomplished by
transferring data from the one to the other component. In case of the tight interconnection, there is no data
transfer between the two components, as they use common internal structures.

According to information flow, there are four types of functional approaches: chainprocessing,
subprocessing, metaprocessing, coprocessing. In the case of the chainprocessing approach there is a serial
processing of information between the components, given that information is sequentially processed by each
component. In the case of the subprocessing approach, one component having a secondary role is embedded
into the other having a primary role. In the metaprocessing approach, the one component forms the basis for
solving the problems and the other plays a metalevel role (e.g. surveillance, control). Finally, in the



coprocessing approach, the components have an equal status and interact between each other to solve
problems.

The categorization model of McGarry et al. (Fig. 5) resembles Hilario’s model in a large degree. It
distinguishes hybrid approaches into three basic categories: unified, transformational, modular. The unified
approach is the same as the unified approach of Hilario, however, without any further distinction.
Essentially, the unified approach of McGarry et al. is the Connectionist (or Neural) Symbol Processing of
Hilario. Moreover, compared to Hilario’s model, there is a rather indirect reference to the distinction of the
unified approach to localist, distributed and combined localist-distributed.

The transformational approach corresponds to Hilario’s translational approach, whereas the modular
approach to the functional one. In the model of McGarry et al., the transformational and modular approaches
are not grouped into the general hybrid approach, as in Hilario’s model, based on the logical argument that
the term “hybrid approach” does not indicate anything important, since all three main categories (unified,
transformational/translational, modular/functional) represent hybrid systems.

The most remarkable differences between the two categorization schemes are identified in the modular
and functional approaches, as far as their decomposition into subcategories is concerned. Based on the
information flow/processing, the systems following the modular approach can be distinguished into those
performing sequential processing (corresponding to Hilario’s chainprocessing subcategory) and those
performing parallel processing. The parallel processing subcategory generally includes the other three
subcategories specified by Hilario (subprocessing, metaprocessing, coprocessing).
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Figure 5. Categorization scheme of McGarry et al.

According to the interconnection degree, three subcategories of the modular approach are distinguished:
passively coupled, actively coupled, interleaved. These three subcategories correspond to the following three
categories of Medsker’s categorization scheme respectively: loosely coupled, tightly coupled and fully
integrated systems. In the case of the first subcategory (passively coupled), there is a loose connection
between the components via the use of shared files. Technically, this subcategory corresponds to the
subcategory ‘loose interconnection’ mentioned by Hilario. In the second subcategory (actively coupled)
there is a tighter interconnection between the components with the use of shared memory and a higher
synchronization level between the components. Finally, in the third subcategory (interleaved) there is a high
level interaction between the components through function calls and by using complex communication
protocols.

It should be mentioned that another difference between the two categorization schemes is that Hilario’s
scheme refers to neuro-symbolic approaches in general, whereas the one of McGarry et al. focuses on hybrid
rule-based approaches.



4  Rule-Based Neuro-Symbolic Approachesfor KR in ESs

4.1 Introducing a new category

Most neuro-symbolic approaches that the above categorizations are dealt with do not concern systems or
schemes that aim at knowledge representation for ESs. Therefore, those integrations do not satisfy the
requirements of an expert system, outlined in Section 2.1. More specifically, in those systems inference is
performed as in neural networks. This means that the user supplies the values of all inputs (known or
unknown, relevant or irrelevant) before the inference process begins and then the network output is
computed. Also, there is no interaction with the user during inferences. Moreover, no explanations are
provided to justify output.

There are, however, a few neuro-symbolic approaches that offer a unified representation scheme, which
provides a unified interactive inference mechanism and an explanation mechanism, in the same way as
knowledge representation and reasoning paradigms used in classical expert systems do. In such schemes, the
two component approaches are so tightly integrated that are almost indistinguishable. We focus here on
integrated approaches of the above type, which integrate symbolic rules (of propositional type) and neural
networks. Such approaches are the so-called connectionist expert systems, in the sense they are defined in
(Gallant 1993), such as (Gallant 1988, Ghalwash 1998, Sima 1995; Sima and Cervenka 2000). Also, another
more recent such approach is neurules (Hatzilygeroudis and Prentzas 2000 and 2001).

The above approaches cannot be fully accommodated by anyone of the categories presented in Section 3.
They do not fit into the functional subcategory of Hilario’s categorization scheme or into the modular
subcategory of the categorization scheme of McGarry et al. Those categories are related to integrated
approaches that include distinct symbolic and neural components, as far as structures as well as processors
(e.g. reasoners) are concerned. This is not exactly the case for the aforementioned neuro-symbolic
approaches. They incorporate a common hybrid knowledge base as well as inference and explanation
mechanisms.

Some of the above approaches bare resemblance to the translational subcategory of Hilario’s scheme or
the transformational subcategory of the scheme of McGarry et al. For instance, the approach presented in
(Gallant 1988 and 1993) can be considered a forerunner of approaches belonging to this category, such as
KBNN:S. This is so, because it combines some kind of domain knowledge (called dependency information)
and training examples for the construction of the knowledge base. Furthermore, neurules can be constructed
by transformation from symbolic rules, leading however to an equivalent (and not a refined) knowledge
base. This transformation results in more efficient inferences and compact forms of knowledge.
Additionally, neurules as well as connectionist expert systems possess interactive inference and explanation
mechanisms, not present in the approaches belonging to the translational/transformational subcategory. It
must also be mentioned that the approach presented in (Sima 1995, Sima and Cervenka 2000) bares no
resemblance to the translational/transformational subcategory, since for the construction of the knowledge
base only training examples are used and not domain knowledge as in the case of (Gallant 1988 and 1993).
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Figure 6. Representational integrations sub-categories

Connectionist expert systems could be considered as belonging to the ‘unified’ category, more
specifically to the ‘localist’ subcategory, of the categorization schemes presented in Section 3. However,



they incorporate features that seem to make them different from unified approaches. To be more specific,
connectionist expert systems do not deal with variable binding and can provide explanations, in contrast to
unified approaches.

The difficulty to fit the above mentioned integrated approaches into some category of the existing
categorization schemes becomes quite explicit in the case of connectionist expert systems from the following
fact. Hilario technically considers this approach as belonging to the unified category. McGarry et al. classify
them into the transformational subcategory. Finally, Medsker considers them as a variation of the fully
integrated model.

From the above analysis, it is clear that a high level category is missing from the existing categorization
hierarchies. Therefore, we introduce such a category, which we call representational integrations (or
approaches). This category is to be placed alongside translational and functional categories in Hilario’s
scheme or alongside the unified, transformational and modular categories of McGarry, Wermter and
Maclntyre’s scheme. The subcategories of this new category are presented in Fig. 6 and explained in the
following.

A parameter that is of interest in representational integrations is which component approach is given pre-
eminence to. There are some neuro-symbolic integrations that give pre-eminence to the symbolic framework
and some others that give pre-eminence to the connectionist framework. This concerns both aspects of KR
and plays a central role on which of the advantages of the two component approaches can be retained in the
integrated scheme. For example, if pre-eminence is given to the connectionist framework, naturalness and
modularity are difficult to retain in some acceptable degree. Or, if pre-eminence is given to the symbolic
framework, generalization capabilities may be reduced. The matter of ‘pre-eminence’ is generally important
not only for neuro-symbolic, but also for other categories of integrations of such kind, such as symbolic-
symbolic, neuro-fuzzy etc ones. For example, if we want to integrate logic and frames, then, if we want to
retain formal semantics and soundness we should give pre-eminence to the logical framework, which means
to incorporate frames within the logical framework or express frames in a logical way (e.g. Horrocks et al.
1999). If we want to retain the flexibility of the frame-based structure of knowledge, then we should
incorporate logic into frames, but then formal semantics are partially lost (e.g. Hatzilygeroudis 1996).

Another characteristic of representational integrations is that integration concerns both aspects of the KR
scheme, syntax and inference mechanism. One thing that may vary is the degree of integration in the two
aspects.

In the sequel, we present representative approaches of the ‘representational’ category, focusing on
approaches that integrate symbolic rules (of propositional type) and neural networks (as mentioned above
t00).

4.2 Connectionist expert systems: Giving pre-eminence to connectionism
4.21 Matrix Controlled Inference Engine (MACIE)

Gallant was the first to present an interactive inference engine and an explanation mechanism for neural
networks with discrete nodes. Connectionist expert systems (Gallant 1988, 1993) are an approach retaining
the basic functions of expert systems, having a neural network with discrete nodes as its knowledge base. To
construct the initial neural network, domain concepts (input, intermediate and output) are assigned to
network nodes and dependency information regarding the concepts is used to define their connections. One
can consider that each node in Gallant’s network corresponds to a symbolic rule. Consequently, the neural
network is trained using an improved variation of the perceptron learning (i.e. the pocket learning
algorithm). In case of inseparability (i.e. non-linear set of training patterns), random cells are inserted into
the network. The introduction of those cells has a negative effect on the naturalness of the connectionist
knowledge base, because they are meaningless.

The approach followed for the creation of the neural network is a forerunner of KBNNs. Compared to
knowledge-based neural networks, the domain knowledge used for the construction of the initial neural
network consists of concepts and dependency information, instead of rules, and also no weight initialization
is required. The approach presented in (Gallant 1988, 1993) has been applied to a medical domain.

Gallant proposed an inference engine called MACIE (MAtrix Controlled Inference Engine). Its
characteristic features are the ability to reach conclusions from partially known inputs, the interaction with
the user, in order to provide input values, and the ability to focus on specific unknown network nodes, which
are assumed to be most important to reach conclusions. Furthermore, MACIE includes an explanation
mechanism.

MACIE combines backward and forward chaining with neural computing. It is based on the fact that for
the computation of a node’s output, not all of its inputs need to be known. For this reason, two sums are



calculated for a node u;, the contribution of the known inputs (KNOWN) and the maximum contribution of
the unknown inputs (MAX_UNKNOWN)) according to the following formulas:

KNOWN; = Y w ju; D
j:uj known
MAX _UNKNOWN; = Ylwiy| (2
k: u,, unknown

Whenever [KNOWN;| > MAX_UNKNOWN,, the output of node U; can be computed, since the remaining
unknown inputs cannot change the outcome. More specifically, the output of U; becomes ‘1’ if KNOWN; > 0
or ‘-1’ if KNOWN; < 0. When the output of a node becomes known, its value is propagated to the next node
levels and may lead to calculation of the outputs of other unknown nodes (forward chaining).

During inference, for each node u, its confidence Conf(u;) is calculated, thus providing an estimation of
how much close is variable U; to become True or False. Conf(l;) is used to compare unknown output nodes,
when insufficient conclusions have been reached. In those cases, the inference process uses the confidence
measure in order to focus on unknown variables considered most important to drawing further conclusions.
Conf(u) is computed as follows:

e For a node with known output,

Conf(u) = u;.
e For an input node with unknown output,

Conf(u) =0
e For the remaining nodes with unknown output,

Wi Conf (uy )
Conf (uj )= *————
| Z|Wi,k|

k: u, unknown

where Uy are the unknown inputs of node U;.

Prior to inference, the user may supply initial values for some input nodes that are propagated to the
consequent level nodes. If insufficient conclusions are drawn, the output node U; with maximum |Conf(u;)] is
selected. The inference process subsequently focuses on the input node Uy of U; having the maximum
absolute weight to U;, since this is the node with the maximum contribution to the output of u;. If Uy is an
input node, the user is asked to give its value. If Uy is not an input node, the inference process selects it and
recursively focuses on its mostly contributing input node (backward chaining). This process carries on until
sufficient conclusions have been drawn.

MACIE offers two types of explanations: one justifying how conclusions were drawn and one explaining
why the user is queried to supply the values of input nodes. The ‘how’ explanations are in the form of
symbolic rules having in their conditions and conclusions the variables corresponding to the network nodes.
However, they lack naturalness, since they include concepts corresponding to the meaningless random cells
inserted into the network, due to inseparability. The ‘why’ explanations provide a trace of the network nodes
causing an input value to be asked from the user during the inference process.

4.2.2 Recency Inference Engine (RIE)

MACIE’s inference engine performs well in cases where the neural network constituting the knowledge base
has a small number of outputs, each depending on a large portion of the inputs. This was the type of the
knowledge base for the medical domain, which MACIE was applied to. However, MACIE’s performance is
reduced, when it is used in sparse connectionist knowledge bases having a large number of outputs, each
depending on a small portion of the inputs. This was the motivation for the development of an improved
inference engine, called the Recency Inference Engine (RIE) (Ghalwash 1998). As mentioned, MACIE uses
the confidence measure as a criterion for choosing the unevaluated output, which inference will focus on.
RIE instead examines not only output but intermediate nodes as well. More specifically, it examines the
“recently triggered” nodes, that is, the nodes affected from the last input value, given by the user, whose
known inputs do not suffice for the evaluation of their output. From those nodes, the one whose output is
closer to be activated is selected. Selection is based on a measure, called the convergence ratio, which
defines the likelihood of an unevaluated node to be activated. The convergence ratio is calculated separately
for each unevaluated node u; according to the following formula:
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where KNOWN; and UNKNOWN,; are calculated according to equations (1) and (2) above. When |c(u;)| > 1,
the currently known inputs of node u; suffice for the computation of its output. More specifically, the output
of ujis ‘1’, if c(u) > 1, and ‘—1°, if ¢(u;) < 1. The inference engine focuses on the node having the maximum
convergence ratio among all the recently triggered nodes.

The inference process works as follows. Given that conclusions have not been reached, the recently
triggered nodes are examined and the node u; with the maximum convergence ratio is selected. The
inference process then examines the input nodes of U; and focuses on node Uy, the one with the maximum
absolute weight. Node Uy is considered as having the maximum influence on the computation of u;’s output.
This last step is executed recursively until U is an input node and then the user supplies its value. When the
user supplies an input value, the convergence ratios of all nodes are recomputed and possible node
activations are propagated to the next level of nodes.

Ghalwash also presents an explanation mechanism of ‘how’ type (similar to Gallant’s), justifying
conclusions via symbolic explanation rules.

Experiments involving two domains, one using the medical knowledge base used by Gallant and the
other using a sparse knowledge base, demonstrated the superiority of the RIE (Ghalwash 1988). More
specifically, RIE requires fewer inputs to be supplied by the user in order to draw the same conclusions as
MACIE. This was due to the convergence ratio criterion that enabled the inference process to focus on the
nodes mostly relevant to the computation of the outputs.

4.2.3 EXPSYS

Sima presented a connectionist expert system shell called EXPSYS (Sima and Cervenka 2000). EXPSYS is
an improvement of MACIE, since it provides interactive inference engine and explanation mechanism for
multi-layer neural networks trained with back-propagation and using a differentiable activation function
(Sima 1995). To handle partial input information, the concept of interval state is introduced for the network
neurons and back-propagation is generalized for neural networks with such neurons. The introduction of the
interval states, though, degrades the comprehensibility of the network compared to Gallant’s approach and,
furthermore, makes the inference process more complicated. The states of a neuron are within the interval [-
1, 1]. A crisp value is represented by one-point intervals; whereas unknown values are encoded with
complete intervals [-1, 1].

The inference process provides the user with partial conclusions and confidences when some input
values have been supplied. Confidences and outputs have to be recomputed when a new input value is
presented.

‘How’ type explanations are provided showing the percentage influence of the inputs to the drawn
conclusion. These specific explanations are used during inference in order to ask the user to provide values
for the unknown inputs having the greatest influence on the outputs.

4.3 Neurules: Giving pre-eminence to symbolic framework

Neurules are a type of hybrid rules integrating symbolic rules with neurocomputing, giving pre-eminence to
the symbolic component (Hatzilygeroudis and Prentzas 2000, 2001a). Neurocomputing is used within the
symbolic framework to improve the performance of symbolic rules. In contrast to the other hybrid
approaches described in the previous sections, the constructed knowledge base retains the modularity of
production rules, since it consists of autonomous units (neurules), and also retains their naturalness in a great
degree, since neurules look much like symbolic rules. Also, the inference mechanism is a tightly integrated
process, which results in more efficient inferences than those of symbolic rules. Explanations in the form of
if-then rules can be also produced.

The form of a neurule is depicted in Figure 7a. Each condition C; is assigned a number sf;, called its
significance factor. Moreover, each rule itself is assigned a number sfy, called its bias factor. Internally, each
neurule is considered as an adaline unit (Fig. 7b). The inputs C; (i=1,...,n) of the unit are the conditions of the
rule. The weights of the unit are the significance factors of the neurule and its bias is the bias factor of the
neurule. Each input takes a value from the following set of discrete values: [1 (true), 0 (false), 0.5
(unknown)]. This gives the opportunity to easily distinguish between the falsity and the absence of a
condition in contrast to symbolic rules. Also, contributes to naturalness, since any false condition does not



contribute at all in drawing the conclusion. The output D represents the conclusion (decision) of the rule.
The output can take one of two values (‘-1°, ‘1’) representing failure and success of the rule respectively.
The significance factor of a condition represents the significance (weight) of the condition in drawing the
conclusion. Table 1 presents an example neurule, from a medical diagnosis domain.

(sfi) i C'1 (s£7),
Ty (sf),

Ty (afy)
then D

(&)
Figure 7. (a) Form of a neurule (b) a neurule as an adaline unit

Table 1. An example neurule

(-4.2) if pain is continuous (3.0),
patient-class isnot man36-55 (2.8),
fever is medium (2.7),
fever is high (2.7)
then disease-type is inflammation

Neurules can be constructed either from symbolic rules (Hatzilygeroudis and Prentzas 2000), thus
exploiting existing symbolic rule bases, or empirical data (i.e., training examples) (Hatzilygeroudis and
Prentzas 2001a). Each adaline unit is individually trained via the Least Mean Square (LMS) algorithm. In
case of inseparability of training patterns, special techniques are used. In that case, more than one neurule
having the same conclusion are produced. Actually, each neurule is a merger of more than one (propositional
type) symbolic rule.

In general, the output of a neurule is computed according to the standard way used in a single neuron (see
e.g. Gallant 1993). However, it is possible to deduce the output of a neurule without knowing the values of
all of its conditions. To achieve this, we use a similar approach to that in (Ghalwash, 1988). We define for
each neurule the known sum and the remaining sumas follows:

kn—sum=sfy + > sf;C
cond; eE
rem-sum= Y |sf;|

cond; eU

where E is the set of evaluated conditions, U the set of unevaluated conditions and C; is the value of
condition cond;. Hence, ‘known-sum’ is the weighted sum of the values of the already known (i.e. evaluated)
conditions (inputs) of the corresponding neurule and ‘rem-sum’ represents the largest possible weighted sum
of the remaining (i.e. unevaluated) conditions of the neurule. If |kn-sum| > rem-sum for a certain neurule,
then evaluation of its conditions can stop, because its output can be deduced regardless of the values of the
unevaluated conditions. In this case, its output is guaranteed to be '-1' if kn-sum < 0 whereas it is “1°, if kn-
sum> 0. So, we define the firing potential (fp) of a neurule as follows:

jn-an
P = fem—sum

The firing potential of a neurule is an estimate of its intention that its output will become ‘+1’. Whenever
fp > 1, the values of the evaluated conditions can determine the value of its output, regardless of the values
of the unevaluated conditions. The rule then evaluates to ‘1’ (true), if kn-sum> 0 or to ‘-1’ (false), if kn-sum
<0.



There are two alternative neurule-based inference processes (Hatzilygeroudis and Prentzas 2002). The
one gives pre-eminence to neurocomputing and is called connectionism-oriented inference process, whereas
the other to symbolic reasoning and is called symbolism-oriented inference process. In the symbolism-
oriented process, a classical rule-based backward chaining process is employed, where evaluation of a rule is
based on the above neurocomputing measure. In the connectionism-oriented process, the choice of the next
rule to be considered is based on the neurocomputing measure, thus the process jumps from rule to rule, but
the rest is symbolic.

Experiments have shown that the connectionism-oriented process does better than those of MACIE and
the Recency Inference Engine (Hatzilygeroudis and Prentzas 2001b and 2001c). On the other hand, a bit
surprisingly, experiments have shown that the symbolism-oriented process does better than the
connectionism-oriented one (Hatzilygeroudis and Prentzas 2002).

Neurules are also associated with an explanation mechanism, capable of providing ‘how’and ‘why-not’
types of explanations in the form of if-then rules as well as ‘why’ type of explanations. Experiments have
shown that neurules explanation mechanism produces more natural explanations with less rules
(Hatzilygeroudis and Prentzas 2001b and 2001c).

Apart from the above, neurules support incremental development of neurule-bases, because they retain
the naturalness and modularity of symbolic rules. One can easily add new neurules or remove old neurules
from a neurule base without making any other changes to it, given that they do not affect existing
knowledge, because neurules are functionally independent units. This is difficult for the other hybrid
approaches. Also, neurule bases can be efficiently updated, i.e. without thorough reconstruction of them. As
mentioned, neurules can be produced either from existing symbolic rules or from empirical data. The
symbolic rules or the empirical data are called the ‘source knowledge’ of the corresponding neurule base.
There have been methods for efficient update of a neurule base given changes to its source knowledge, in
either case (Prentzas and Hatzilygeroudis 2002, Prentzas et al. 2002). Knowledge base update is a very
difficult problem for the other approaches.

Due to the aforementioned features of neurules, a neurule-based system can compete more effectively
with rule-based expert systems than the other hybrid approaches as far as friendliness of the interaction with
the user is concerned. Not only interactive inference and natural explanation is provided, but also the
naturalness and modularity of the knowledge base is retained since pre-eminence is given to the symbolic
framework. On the contrary, the other hybrid approaches follow a different approach by enriching a neural
network with an interactive inference engine and an explanation mechanism retaining to a great degree the
deficiencies of a neural knowledge base regarding comprehensibility and modularity.

5. Conclusions

In this paper, we focus on approaches integrating symbolic rules and neural networks, which offer a unified
neuro-symbolic knowledge representation and reasoning scheme possessing the basic functionalities of an
expert system (i.e. separation of knowledge from its use, interactive inference and provision of
explanations). Such functional features are deemed important as they improve the user-friendliness of the
hybrid system during its interaction with the user.

First, we point out that the above category of integrations cannot be fully accommodated by existing
categorization schemes. Therefore, we introduce a new category, namely ‘representational integrations’, in
the existing schemes. Furthermore, we distinguish between two sub-categories of such approaches: those
giving pre-eminence to connectionism and those giving pre-eminence to the symbolic framework.

A prominent disadvantage of the systems belonging to the first sub-category involves the deficiencies of
the knowledge base (to a lesser or greater dergee) as far as naturalness and modularity are concerned. As
explained, this drawback is not a characteristic of neurules, a representative of the second sub-category. By
giving pre-eminence to the symbolic framework, neurules retain the naturalness and modularity of symbolic
rules to a large degree. On the other hand, neurules are proved to be even more efficient than the other
approaches. Additionally, incremental development and update capabilities of a neurule base are retained.

We’ve noticed that this category of integrations, especially the second sub-category, has been
overlooked. However, we believe that it constitutes a good direction for further research.
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