
Eng Int Syst (2010) 0: 1–11
© 2010 CRL Publishing Ltd Engineering

Intelligent Systems

A web-based example-tracing
tutor for formalising sentences in
first order logic

Themistoklis Chronopoulos, Ioannis Hatzilygeroudis, Isidoros Perikos and Kostantinos Kovas

Department of Computer Engineering & Informatics, School of Engineering, University of Patras, Greece.
E-mail: {chronop, ihatz, perikos, kobas}@ceid.upatras.gr

In this paper we present a web-based Example-tracing Tutor for learning how to formalise sentences in first order logic (FOL) which
is a basic knowledge representation language. The tutor has been developed using the Cognitive Tutoring Authoring Tool (CTAT) and
consists of a full web-based student interface that has been designed according to a structured process of formalising sentences in
FOL language. Formalising process is driven by a behaviour graph in which examples of converting sentences from natural language
(NL) to FOL, of varying difficulty, have been authored and annotated with hints and misconceptions. Small scale evaluation has given
quite satisfactory results.

Keywords: example-tracing tutor, formalisation in logic, knowledge representation tutor.

1. INTRODUCTION

Knowledge Representation & Reasoning (KR&R) is a funda-
mental topic of Artificial Intelligence (AI). A basic KR lan-
guage is First-Order Logic (FOL), the main representative of
logic-based representation languages, which is part of almost
any introductory AI course and textbook [1, 2]. To make auto-
mated inferences, Clause Form (CF), a special form of FOL,
is used. Teaching FOL as a knowledge representation and
reasoning language includes many aspects. One of them is
translating natural language (NL) sentences into FOL formu-
las. It is an ad-hoc process; there is no specific algorithm that
can be automated within a computer. This is mainly due to
the fact that NL has no clear semantics as FOL does. Also,
most of existing textbooks do not pay the required attention to

that. They simply provide the syntax of FOL and definitions
of the logical symbols and terms [1, 2]. Even more special-
ized textbooks do the same [3]. At best, they provide a kind
of more extended explanations and examples [4]. They do
not provide any systematic guidance towards it. Given the
above, students usually find difficulties in learning the task of
formalizing NL sentences in FOL, which confronts to tutors’
common experience.

In [5], we introduced a structured process for guiding stu-
dents in translating a NL sentence into a FOL one, namely
the NL to FOL SIP process. In [6], we present a web-based
system implementing the SIP process, i.e. helping students
in learning how to convert NL sentences into FOL formulas.
Having used the above system for some time, we resulted in
the following findings: (a) At a first stage, students may not

vol 00 no 0 September 2010 1

A WEB-BASED EXAMPLE-TRACING TUTOR FOR FORMALISING SENTENCES IN FIRST ORDER LOGIC

be necessary to work with sentences that produce formulas
with more than three groups of atoms or with more than one
group of formulas. (b) Tutors would like to use a graphical
way of describing the SIP steps for each formula and a way of
massively inserting them. Also, they would like related hints
or feedback messages to be presented to the users in case of
errors.

Example-tracing tutors are problem-specific tutors that pro-
vide guidance to the students during problem-solving practice
by comparing their solution steps to the right solving process
of an example that has been recorded in the tutor. They pro-
vide hints and error feedback messages, and are flexible to
handle multiple solution strategies and paths. [7]

CTAT (Cognitive Tutor Authoring Tools) is an authoring
tool for creating example-tracing tutors that satisfies the pre-
mentioned requirements [8, 9, 10].

In a recent work [17], we used CTAT to develop an exam-
ple tracing tutor for the conversion of sentences with simple
semantics, from NL to FOL, based on a simplified version of
the above NL to FOL SIP process. So tutoring in this stand
alone version was limited to a small range of examples.

In this paper, we present a web-based example-tracing tutor
which consits of a student interface and a behavior graph for
the guided formalising of sentences with richer semantics in
FOL. In this version, student interface is expanded to include
also the loops of steps which are described in the full NL
to FOL SIP process. The sentences that have been used as
examples for the formalising process are of varying difficulty.

2. RELATED WORK

There are some systems like Logic Tutor [11], Logic-ITA [12]
and P-Logic Tutor [13] which, although they deal with learn-
ing and/or teaching logic, they are not concerned with how
to use predicate logic as a KR&R language and, most impor-
tatnt, they do not deal with how to formalize a NL sentence
into FOL.

KRRT (Knowledge Representation and Reasoning Tutor)
[14] is a web-based system that aims at helping students to
learn FOL as a KR&R language. It deals with both knowl-
edge representation in and reasoning with FOL. The transla-
tion form NL to FOL takes place in its KR part. However, the
only help provided to the students is at syntactic and logical
equivalence levels. The student gives his/her FOL proposal
sentence and the system checks its syntax to see whether it
is the correct one (here equivalent sentences are acceptable).
However, it does not provide any guidance about how to make
that translation or even what is the kind of error made.

In [6] a web based system for teaching natural language
to first order logic is presented. This interactive system aims
at helping students to learn how to convert/translate natural
language to first order logic. It tries to achieve it by proving
a NL to FOL structured and interactive process (NLtoFOL
SIP) for the conversion and (b) guidance and help during the
stages of that process. The system during the interaction with
the students can adapt the help and the guidance provided
according to the student’s needs and errors. Also the user
interface is dynamically configured during the user interaction
to reflect the steps of NLtoFOL SIP process.

The system in [6] has the same objectives as the system
presented here, but there are also significant differences that
concern (a) the user interface, (b) the way it works internally
for student interaction checking, (c) the way hints/help are/is
structured and (d) the way new sentences are inserted. The
system in [6] is not an example-tracing or cognitive tutor. It is
based on a different methodology; it’s a web-based interactive
and intelligent system.

3. A STRUCTURED AND INTERACTIVE
PROCESS FOR NL TO FOL
CONVERSION

The process of formalising FOL sentences concerns transla-
tion of a given NL sentence into a FOL formula. The main
problem in converting natural language into first order logic
has to do with the unclear semantics that natural language has.
Natural language has no clear semantics as FOL has. How-
ever, the main difficulty comes from the lack of a systematic
way of making the conversion. The NL to FOL structured
and interactive process (NLtoFOL SIP) was initially intro-
duced in [5]. It is a process that guides a student in translat-
ing/converting a NL sentence into a FOL one, via the following
steps:

1. Spot the verbs, the nouns and the adjectives in the sen-
tence and specify the corresponding predicates or func-
tion symbols.

2. Specify the number, the types and the symbols of the ar-
guments of the function symbols (first) and the predicates
(next).

3. Specify the quantifiers of the variables.

4. Construct the atomic expressions (or atoms) correspond-
ing to predicates.

5. Divide produced atoms in groups of the same level atoms.

6. Specify the connectives between atoms of each group
and create corresponding logical formulas.

7. Divide produced formulas in groups of the same level
formulas.

8. If only one group of formulas is produced, specify the
connectives between formulas of the group, create the
next level formula and go to step 10.

9. Specify the connectives between formulas of each group,
create the next level formulas and go to step 7.

10. Place quantifiers in the right points in the produced for-
mula to create the final FOL formula.

To demonstrate the steps of the above process, we present
the conversion of the NL sentence “All farmers who own
donkeys beat them” into a FOL formula.

Step 1. Spot the verbs, the nouns and the adjectives in the
sentence and specify the corresponding predicates or function
symbols.

There are four such items here:

2 Engineering Intelligent Systems

T. CHRONOPOULOS ET AL

farmers← predicate: farmer

donkeys← predicate: donkey

own← predicate: owns

beat← predicate: beats

Step 2. Specify the number, the types and the symbols of the
arguments of the function symbols (first) and the predicates
(next).

We do that in the following table:

Predicate Arity Types Symbols
farmer 1 variable x

donkey 1 variable y

owns 2 variable, variable x, y

beats 2 variable, variable x, y

Step 3. Specify the quantifiers of the variables.

x← ∀ (because of “All”)

y← ∀ (because of “them”, which denotes an “all” for
“donkeys”)

Step 4. Construct the atomic expressions (or atoms) corre-
sponding to predicates.

We construct as many atoms as the predicates:

Atom 1: farmer(x)

Atom 2: donkey(y)

Atom 3: owns(x,y)

Atom 4: beats(x, y)

Step 5. Divide produced atoms in groups of the same level
atoms.

This mainly refers to grouping atoms that should be con-
nected with each other with some connective:

AtomGroup1: {farmer(x), donkey(y), owns(x,y)}

AtomGroup2: {beats(x,y)}

Or alternatively

AtomGroup1: {farmer(x)}

AtomGroup2: {donkey(y), owns(x,y)}

AtomGroup3: {beats(x,y)}

Step 6. Specify the connectives between atoms of each group
and create corresponding logical formulas.

We form the formulas corresponding to the groups of step
5.

AtomGroup1 ← Form1: farmer(x) ∧gdonkey(y)g ∧
gowns(x,y)

AtomGroup2← Form2: beats(x,y)

Or alternatively

AtomGroup1← Form1: farmer(x)

AtomGroup2← Form2: donkey(y)g ∧ gowns(x,y)

AtomGroup3← Form3: beats(x,y)

Step 7. Divide produced formulas in groups of the same level
formulas.

This usually corresponds to specifying the left and right
parts of an implication:

GroupForm1-1: {farmer(x)∧gdonkey(y)g∧gowns(x,y)}

GroupForm2-1: {beats(x,y)}

Or alternatively

GroupForm1-1: {farmer(x)}

GroupForm2-1: {donkey(y)g∧owns(x,y), beats(x,y)}

Step 8. If only one group of formulas is produced, specify the
connectives between formulas of the group, create the next
level formula and go to step 10.

Not applicable.

Step 9. Specify the connectives between formulas of each
group, create the next level formulas and go to step 7.

GroupForm1-2: farmer(x) ∧gdonkey(y)g ∧ gowns(x,y)

GroupForm2-2: beats(x,y)

Or alternatively

GroupForm1-2← Form1-2: farmer (x)

GroupForm2-2← Form2-2: (donkey(y)∧owns(x,y))⇒
beats(x,y)

Step 7.

GroupForm1-2: {(farmer(x) ∧gdonkey(y)g ∧
gowns(x,y)), beats(x,y)}

Or alternatively

GroupForm1-2: {farmer(x), (donkey(y)g∧owns(x,y))
⇒beats(x,y)}

Step 8.

GroupForm1-2: ←Form1-3: {(farmer(x)
∧gdonkey(y)g ∧ gowns(x,y))⇒ beats(x,y)}

Or alternatively

GroupForm1-2: ←Form1-3: {farmer(x) ⇒ ((farmer
(x)g∧owns(x,y))⇒ beats(x,y))}

Step 10. Place quantifiers in the right places in the produced
formula to create the final FOL formula.

The produced final FOL sentence is as follows:

vol 00 no 0 September 2010 3

A WEB-BASED EXAMPLE-TRACING TUTOR FOR FORMALISING SENTENCES IN FIRST ORDER LOGIC

oix) (iy) (farmer(x) ∧gdonkey(y)g ∧ gowns(x,y)) ⇒
beats(x,y)

Or alternatively

oix) ((farmer(x) ⇒ (iy) ((donkey(y) ∧ owns(x, y)) ⇒
beats(x,y)))

4. EXAMPLE-TRACING TUTORS

The Cognitive Tutor Authoring Tools (CTAT) [8] is a set of
tools that support creation of two types of tutors: example-
tracing tutors and cognitive tutors. Example-tracing tutors, in
contrast to cognitive tutors or other tutors such as constraint-
based tutors, compare student problem-solving steps against
the solutions steps of selected problems that have been demon-
strated by the author and recorded in a behavior graph [7].
This kind of tutors, provide a step-by-step guidance during
the problem-solving process and they support alternative prob-
lem solving strategies. Example-tracing tutors are problem-
specific and require no AI programming since they are based
on tracing specific pre-configured examples [9], whereas cog-
nitive tutors require AI programming and they are based on a
rule-based cognitive model [10]. Example-tracing tutors are
easy to implement, but provide less flexibility, whereas cog-
nitive tutors is quite more difficult to build, but can be quite
more flexible.

Developing an example-tracing tutor in CTAT involves the
following steps [7]:

1. Creation of the graphical student interface.

2. Demonstration and recording of alternative correct and
incorrect solutions of a problem in a Behavior Graph.

3. Annotation of the solutions steps in the Behavior Graph
with hint or error feedback messages.

GUI Builder, is a tool of CTAT for building the user interface
of the tutor in the first step. The author with GUI builder can
create the tutor interface through drag-and-drop techniques
from a “recordable widget” palette added to Java NetBeans.

Additionally, CTAT offers another tool, the Behavior
Recorder, for building the “behavior graph” of a problem,
in which alternate correct and incorrect solution steps are
recorded, by the form of nodes and links. Each link repre-
sents a solution step and is associated with a corresponding
item of the user interface. A correct link can be annotated
with hints, whereas an incorrect link can be annotated with an
error feedback message.

When the student uses the tutor, CTAT’s example-tracing
engine implements the example-tracing function which com-
pares each user’s problem solving step to the corresponding
step in the behavior graph. Based on the results, the tutor
provides the appropriate feedback (accepts or rejects the an-
swer and also provides error feedback messages for incorrect
student action links).

5. A WEB-BASED EXAMPLE-TRACING
TUTOR FOR FORMALISING
SENTENCES

In a previous work, we used CTAT for building an example-
tracing tutor for the learning process of the convertion of a
sentence from NL to FOL, in order to systematically analyze
a large number of examples to extract possible cognitive pat-
terns, and also to systematically analyze various types of hints
or feedback needed.

More specifically, in [17], we implemented a stand-alone
version of an example-tracing tutor for the conversion of sen-
tences from natural language to FOL, according to a structured
and interactive process, which was somewhat simplified from
that described in 3, as it refers to sentences that result in for-
mulas with at most one group of formulas.

In this paper we present a web-based version of this tutor
to support delivering a sequence of tutor problems on the web
and experimentation: on-line tests, as well as log recording
and analysis.

More specifically, the web-based tutor can provide the fol-
lowing capabilities for teachers and students:

• Teacher can easily update the behavior graph adding new
examples or hints since the behavior graph is located on
the server.

• Students can use the tutor without time or spatial restric-
tions.

• Users can log-in the system and by that is guaranteed the
uniqueness of each student session

• Teacher can access, through log files on the server, the
information about the student’s learning progress

Finally, and most important, we have extended the student
interface to include formalising of sentences that could result
in formulas with two groups of formulas and a more complex
behavior graph has been created to include the conversion
of more sentences with a varying degree of difficulty. To
facilitate authoring of more sentences we have also used a
template-based approach using Mass Production facility of
CTAT [8].

6. THE STUDENT INTERFACE

According to the process presented in Section 4, we first cre-
ated the student interface of our system to reflect the NLtoFOL
SIP process, as shown in Fig. 1. Actually a separate student in-
terface template has been implemented for each step or group
of steps of the process. All those student interface templates
are integrated into one interface as different step tabs, through
which a student can try to convert a NL sentence into a FOL
formula following the NLtoFOL SIP process. Each tab, ex-
cept first, corresponds to a step of the NLtoFOL SIP process.
The first tab (“Atoms”) corresponds to steps 1-4 of the pro-
cess. In each problem solving cycle the student follows the
NLtoFOL SIP process selecting one tab at a time, selecting on
it the interface elements to work on and performing a problem
solving action.

4 Engineering Intelligent Systems

T. CHRONOPOULOS ET AL

Figure 1 Student graphical web interface.

7. THE BEHAVIOR GRAPH

In the next step, both correct and incorrect problem-solving
behavior of several sentences, were recorded in the Behav-
ior Graph, by the Behavior Recorder of CTAT. As a result
there were created as many behavior sub-graphs as the sen-
tences. Also, alternatives solution paths for the translations
of the same sentences, where applicable, have been recorded
as alternative solutions paths. For example, in Figure 2 each
subgraph refers to the translation of a different sentence or
to an alternative translation of the same sentence (e.g. states
400 and 430) or to a bugy state (e.g. state 138). These cases
are used as the basis for Example-Tracing Tutors to provide
guidance to students.

The student can select any sentence from the interface of
the system (Figure 4). The sentences are presented to the user
sorted by their difficulty of the conversion process. There are
three levels of difficulty (easy, medium and advanced).

As we have already mentioned, at steps 7 to 9, groups of
the same level formulas of a sentence are constructed. Iter-
ation of these steps is necessary in case we have to convert
sentences that have more than two levels of groups of formu-
las. Thus, complex sentences that have many levels of groups
of formulas are more difficult to convert from NL into FOL
formulas. The level of a sentence’s difficulty mainly depends
on the number of the groups of formulas it includes. More
complex sentences require iteration of theses stages in order
to form the FOL formula of the sentence. The difficulty lev-
els are “easy”, “medium” and “advanced”. We characterize
as el“easy” sentences that don’t include groups of formulas.
Thus their conversion process doesn’t involve steps 7-9. The
next difficulty level is “medium”. Sentences that their con-
version process requires implementation of steps 7-9 exactly
one time are of medium level. Finally, we characterize as
“advanced” sentences that their conversion process involves
two or more iterations of steps 7-9. These are more complex
sentences with many levels of atoms and groups and proba-
bly many logical connectives. Also, there are other factors
for difficulty level characterization, like e.g. the number of

quantifiers and the number of alternative (equivalent) FOL
formulas.

In Table 1, we present some sentences, that have been stored
for use in the system, and their difficulty level, based on the
total number of quantifiers of their FOL formulas, the number
of loops that are necessary to convert the sentence to a FOL
formula and the number of alternatives FOL formulas that can
be produced.

8. ANNOTATION OF SOLUTION STEPS

CTAT’s Example-Tracing Engine compares the student’s
problem-solving steps to the solution steps which have been
recorded in the Behavior Graph and guides him/her through
the solution path. When a student’s answer or selection
reaches a correct action-state of the graph then a positive feed-
back is provided, otherwise a negative feedback is returned
to the student. Tracing the student’s step-by-step solution
enables the tutor to provide individualized instruction in the
problem solving context.

When a student’s answer reaches a state of the graph which
has been marked as incorrect action, then the attached “buggy”
error feedback message is returned to the student. Hints are
provided by the tutor almost on each link of the graph, but
they are displayed only on student request [15].

The NLtoFOL tutor provides feedback on each problem
solving action, by accepting correct actions, which is shown
by green color to the student and tagging errors instead of
accepting them, which is shown by red color to the student.

8.1 Incorrect steps

In general, any student input that is not recognized by the tutor
is marked as incorrect, but by defining incorrect steps in the
graph, the tutor will be able to provide a customized error
feedback message for the specified input. In each message
we have included an example to demonstrate the correct use.

vol 00 no 0 September 2010 5

A WEB-BASED EXAMPLE-TRACING TUTOR FOR FORMALISING SENTENCES IN FIRST ORDER LOGIC

Figure 2 A part of the Behavior Graph.

Table 1 Example sentences and their difficulty factors.

Sentence #Quantifiers #Loops #Alternatives Difficulty Level
Some numbers are even 1 0 0 easy
All cats are mammals 1 0 0 easy
No purple mushroom is poisonous 1 1 1 medium
All human eats some food 2 1 1 medium
Every farmer who owns a donkey beats it 2 2 2 advanced

We focus on common errors that happen at the conversion of
sentences from natural language to first order logic language,
such as:

• Misuse of AND connective

Example: “All dogs love playing games.”

Common error: (∀x) dog(x) ∧ loves(x, playing_games)

Right formula: (∀x) dog(x)⇒ loves(x, playing_games)

• The order of quantifiers

Example: “All love somebody.”

Common error: (∃ y) (∀ x) loves(x, y)

Right formula: (∀ x) (∃ y) loves(x, y)

• Use of function

Example: “Pluto loves its master.”

Common error: (∀x) master(x, pluto)⇒ loves(pluto, x)

Right formula: loves(pluto, master_of(pluto))

• Grouping atoms of the same level

• Grouping formulas of the same level

For example, in Figure 4 the way of recording right and in-
correct steps is displayed. The right selection is state209 and
a “buggy” state referring to a false selection of quantifier is
state646. If student reaches this state, a suitable message will
be issued.

We also demonstrated the tutor cases of errors that are re-
lated to the sentence. For example in the sentence “All humans
eat some food”, someone can characterize the “All” as pred-
icate. In such errors the tutor gives feedback that is related
to the theory of FOL language. The example-tracing tutor
doesn’t accept the answer in which the student fills partially
the right answer e.g. fills the right predicate but in the wrong
number (“humans” instead of “human”).

6 Engineering Intelligent Systems

T. CHRONOPOULOS ET AL

Figure 3 Example sentences included in the example-tracing tutor.

Figure 4 A part of the behavior graph recording correct and incorrect states.

8.2 Annotation of Hints

There are several factors that may affect the choice of a spe-
cific hint: tutoring topic, tutoring context, tutoring history,
student’s answer, and so on. First, to be pedagogically useful,
a hint has to be related to the tutoring topic and be useful in
helping the student find the expected answer. So the tutoring
topic is important. [16]

Our tutor provides advice for building a FOL sentence, upon
request of the student. We have implemented four levels of
advice available for each step of the conversion of the sen-
tence (see Figure 5 for an example). The first level reminds
or advises the student on the corresponding goal according to
the NLtoFOL SIP and a general description of how to achieve
the goal. The second level provides a hint from the theoretical
context of first order logic (definitions, syntactic etc) that is
related to the corresponding step. The third level provides a

hint specific to the case by providing a similar example. Fi-
nally, the fourth level provides concrete advice on solving the
goal in the current context by suggesting the correct solution.

8.3 Knowledge labels

After the completion of the behavior graph of the tutor, we
assigned knowledge labels to links in the behavior graph, to
represent the skills required for each step of the formalising
process.

We have added the following knowledge labels to links
in the behavior graph: FindPredicate, FindArgument, Spec-
ifyQuantifier, ConstructAtom, FormulateGroup, SpecifyCon-
nective, ConstructFormula.

This is a form of cognitive task analysis, since we deter-
mine how the overall problem-solving skill breaks down into
smaller components.

vol 00 no 0 September 2010 7

A WEB-BASED EXAMPLE-TRACING TUTOR FOR FORMALISING SENTENCES IN FIRST ORDER LOGIC

Figure 5 An example set of hints (step 1 of NLtoFOL SIP).

First of all this process can speed up the development of the
tutor, since it provides a way to copy hint messages from one
step to a similar step.

But, most important, when the tutor is used to evaluate the
knowledge of the students (by suppressing student feedback),
knowledge labels assist in knowledge tracing.

At the same time, it is a way of planning the cognitive model,
since knowledge labels can be used, to create production rules
corresponding to each identified skill. [9]

9. MASS PRODUCTION OF THE
BEHAVIOR GRAPH

To facilitate the creation of many tutored conversions of sen-
tences from NL to FOL, we have used a facility that CTAT
provides for template-based Mass Production.

The idea behind Mass Production is to help an author gen-
erate many problems of the same structure without having to
demonstrate solutions to each of them.

First, we created a behavior graph template, for the con-
version of similar or near similar sentences, substituting the
sentence-specific values of the behavior graph (such as the
values of steps, hints, and error feedback messages) with vari-
ables (Figure 6), and then we defined in the spreadsheet, the
values of the variables required for the conversion of each
sentence (Figure 7).

Finally, we merged the problems table and behavior graph
template and a behavior graph with mass-produced behavior
sub-graphs was generated, simplifying and speeding-up the
whole authoring process.

10. EVALUATION

We made a small scale evaluation of the system in our Depart-
ment. Ten students that had been taught about logic during the
course lectures were instructed to use the system and then fill
in a questionnaire including questions for evaluating usability
and learning. The questionnaire included eight questions. The
questions 1-3 were based on the following scale [1: a little,
2: neutral, 3: very much]. The results are shown in Table 2.

Finally, questions 4–8 were of open type and concerned
strong and weak points or problems faced in using the sys-
tem. Ten students filled in the questionnaire. Their answers
showed that the students in general were helped in learning the
conversion of sentences and found the system very interesting
to use (70%), although the interface was not considered to be
easy to learn. In fact, many students (40%) agreed that it took
them more than 20 minutes to get familiar with it. Finally, the
majority of the students (over 70%) would recommend the
system to the next year’s students.

We also conducted a second experiment. We created two
groups of ten students each, randomly selected. One group,

8 Engineering Intelligent Systems

T. CHRONOPOULOS ET AL

Figure 6 Constructing the behavior graph template for mass production.

Table 2 Questionnaire Results.

Q
Questionnaire

Questions
Answers (%) Total Students 10
a little neutral very much

1 Did you find the system inteface
easy to use?

20 60 20

2 How much did the system help
you to learn the convertion pro-
cess?

0 30 70

3 Did you find the system interest-
ing to use?

0 40 60

Table 3 Evaluation Test Results.

Group Correctly
converted
sentences (%)

Lecture based learning 35
Plus System based learning 65

apart from lectures, used the system for learning the NL to
FOL conversion, whereas the other didn’t. After the study,
the students took a test: to convert seven NL sentences into
FOL ones. The results, which show the usefulness of the
system, are presented in Table 3. The large difference between
the performances of the two groups is due not only to the
improvement of the skill of the second group in formalizing
sentences, but also to the increase of their interest in doing that
(as indicated from the results of Table 2) and to the availability
of many examples for practicing.

Although our evaluation is based on relatively small groups
of students, we believe that its findings are adequately reliable.
They are consistent with the intuition that use of a suitable tool,
apart from lectures, will give better results.

Additionally, we asked the opinion of a few tutors of AI
courses and they agreed that the system lacks a more conve-
nient way to add new sentences and examples to it.

11. CONCLUSIONS

In this paper, we present a web-based example-tracing tutor
for the conversion of NL sentences into FOL formulas. This
topic is one of the important ones in teaching logic as a knowl-
edge representation language. The conversion is based on a
structured and interactive process, called the NLtoFOL SIP.

To follow that process, we constructed a suitable interface
that reflects the steps of the process, using CTAT. We also de-
signed worked-out examples of conversions for several sen-
tences of different levels of difficulty and created correspond-
ing behavior graphs with the Behavior Recorder. In the behav-
ior graph not only correct steps are recorded, but also incorrect
ones, based on common errors. Furthermore, four levels of
help to the students have been identified and recorded as an-
notated hints.

The system has been tested by a group of ten students and
the results are quite satisfactory. A problem identified was
some difficulty in getting quickly familiar with the system
and the process.

vol 00 no 0 September 2010 9

A WEB-BASED EXAMPLE-TRACING TUTOR FOR FORMALISING SENTENCES IN FIRST ORDER LOGIC

Figure 7 A spreadsheet with the required data for the conversion of a given sentence.

Example-Tracing Tutors are quite inflexible as far as in-
ternal representation of the behavior graph is concerned. We
sometimes need some more flexibility on that. For exam-
ple, one cannot distinguish the type of error in a predicate
(whether it is on syntax or wrong word). Cognitive tutors are
another type of tutors provided by CTAT. However, in contrast
to example-based tutors, rule-based programming is required
to implement a tutoring model. However, they provide more
flexibility in the tutoring process with regards to the guidance
offered to the user. So, the next step to follow this work is the
design and implementation of a cognitive tutor. The already
designed examples will be of help to this direction.

REFERENCES

1. Russell, S, Norvig, P (2003). Artificial Intelligence: a modern
approach. 2nd Edition. Upper Saddle River, NJ, USA: Prentice
Hall.

2. Luger, GF (2004). Artificial Intelligence: Structures and Strate-
gies for Complex Problem Solving. 5th Edition, Addison-
Wesley.

3. Brachman, RJ, Levesque, HJ (2004). Knowledge Representa-
tion and Reasoning. Elsevier.

4. Genesereth, M R, Nilsson, NJ (1987). Logical Foundations of
AI. Morgan Kaufmann, Palo Alto.

5. Hatzilygeroudis, I (2007). Teaching NL to FOL and FOL to
CL Conversions. Proceedings of the 20th International FLAIRS
Conf., Key West, FL, May 2007, AAAI Press, pp. 309–314.

6. Hatzilygeroudis, I, Perikos, I (2009). A Web-Based Interactive
System for Learning NL to FOL Conversion. In: Damiani, E,
Jeong, J, Howlett, RJ and Jain, LC (Eds.). New Directions in

Intelligent Interactive Multimedia Systems and Services – 2,
SCI 266, Springer-Verlag, pp. 297–307.

7. Aleven, V, McLaren, BM, Sewall, J, Koedinger, KR (2009). A
new paradigm for intelligent tutoring systems: Example-tracing
tutors. International Journal of Artificial Intelligence in Educa-
tion, 19(2), pp. 105–154.

8. Aleven, V, McLaren, BM, Sewall, J, Koedinger, KR (2006). The
Cognitive Tutor Authoring Tools (CTAT): Preliminary Evalua-
tion of Efficiency Gains. In: the Proceedings of the 8th Inter-
national Conference on Intelligent Tutoring Systems (ITS-06),
pp. 61–70.

9. Koedinger, K, Aleven, V, Heffernan, N, McLaren, B, Hocken-
berry, M (2004). Opening the door to non-programmers: au-
thoring intelligent tutor behavior by demonstration. Proceed-
ings ITS-2004, pp. 162–174, Berlin: Springer.

10. Koedinger, KR, Aleven, V (2003). Toward a Rapid Devel-
opment Environment for Cognitive Tutors. In U. Hoppe, F.
Verdejo, J. Kay (Eds.), Proceedings of the 11th International
Conference onArtificial Intelligence in Education, AI-ED 2003,
pp. 455–457.

11. Abraham, D, Crawford, L, Lesta, L, Merceron, A, Yacef, K
(2001). The Logic Tutor: A multimedia presentation. Electronic
Journal of Computer–Enhanced Learning.

12. Abraham, D and Yacef, K (2002). Adaptation in the Web-Based
Logic-ITA. In: De Bra, P., Brusilovsky, P., Conejo, R. (Eds). AH
2002, LNCS 2347, pp. 456–461.

13. Lukins, S, Levicki, A, Burg, J (2002). A tutorial program for
propositional logic with human/computer interactive learning.
In: SIGCSE 2002, pp. 381–385. ACM, NY.

14. Alonso, JA, Aranda, GA, Martın.-Matceos, FJ (2007). KRRT:
Knowledge Representation and Reasoning Tutor. In: Proceed-
ings of EUROCAST 2007, LNCA 4739, pp. 400–407. Springer-
Verlag, Berlin Heidelberg.

10 Engineering Intelligent Systems

T. CHRONOPOULOS ET AL

15. Aleven, V, Sewall, J, McLaren, BM, Koedinger, KR (2006).
Rapid Authoring of Intelligent Tutors for Real-World and Exper-
imental Use. Proceedings of 6th IEEE international conference
on advanced learning technologies (ICALT 2006), pp. 847–851.

16. Zhou, Y, Freedman, R, Glass, M, Michael, JA, Rovick, AA,
Evens, MW (1999). Delivering Hints in a Dialogue-Based In-

telligent Tutoring System. Proceedings of the Sixteenth National
Conference on Artificial Intelligence (AAAI-99), pp.128–134.

17. Chronopoulos, T, Perikos, I, Hatzilygeroydis, I (2010). An
example-tracing tutor for teaching NL to FOL conversion. Pro-
ceedings of the 6th IFIP WG 12.5 International Conference,
AIAI2010, Larnaca, Cyprus, October 2010.

vol 00 no 0 September 2010 11

