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Abstract 

In this chapter, we deal with knowledge representation in intelligent educational systems (IESs). We 
make an effort to define requirements for knowledge representation (KR) in an IES. The requirements 
concern all stages of an IES’s life cycle (construction, operation and maintenance), all types of users 
(experts, engineers, learners) and all its modules (domain knowledge, user model, pedagogical model). 
We also briefly present and compare various KR schemes as far as the specified KR requirements are 
concerned. It appears that various hybrid approaches to knowledge representation can satisfy the 
requirements in a greater degree than that of single representations. Another finding is that there is not 
a hybrid scheme that can satisfy the requirements of all the modules of an IES. So, multiple 
representations or a multi-paradigm representation environment could provide a solution to 
requirements satisfaction. 
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INTRODUCTION 
 
Recent developments in computer-based educational systems had as a result a new 
generation of them encompassing intelligence, to increase their effectiveness, called 
Intelligent Educational Systems (IESs). Intelligent Tutoring Systems (ITSs) constitute 
a popular type of IESs. ITSs take into account the user’s knowledge level and skills 
and adapt presentation of the teaching material to the needs and abilities of individual 
users. This is achieved by using Artificial Intelligence techniques to represent 
pedagogical decisions as well as domain knowledge and information regarding each 
student. ITSs were usually developed as stand-alone systems. However, the 
emergence of the WWW gave rise to a number of Web-based ITSs (Brusilovsky, 
1999), which is a type of Web-Based Intelligent Educational Systems (WBIESs) 
(Hatzilygeroudis, 2004).

Another type of educational systems is Adaptive Educational Hypermedia Systems 
(AEHSs) (Brusilovsky et al, 1998). This type of systems is specifically developed for 
hypertext environments such as the WWW. The main services offered to their users 
are adaptive presentation of the teaching content and adaptive navigation by adapting 
the page hyperlinks. Compared to ITSs, they offer a greater sense of freedom to the 
user, since they allow a guided navigation to the user-adapted educational pages. 
Furthermore, they dynamically construct or adapt the educational pages, in contrast to 
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ITSs, where the contents of pages are typically static. Enhancing AEHSs with aspects 
and techniques from ITSs creates another type of WBIESs.  

A crucial aspect in IESs (hence WBIESs) is making decisions on the proper 
adaptation of the system to the user needs. This is mainly done by mimicking 
corresponding human decision making. So, a crucial aspect in the development of an 
IES, hence of a WBIES, is how related knowledge is represented and how reasoning 
for decision making is accomplished. Various knowledge representation (KR) 
schemes have been used in IESs. An aspect that has not received much attention yet is 
defining requirements for knowledge representation in IESs. The definition of such 
requirements is important, since it can assist in the selection of the suitable KR 
scheme(s).  

In this chapter, we present an effort to specify a number of requirements that a KR 
scheme, which is going to be used in an IES, should meet in order to be adequate. 
Based on them and a comparison of various KR schemes, we argue that hybrid 
schemes satisfy those requirements in a larger degree than single schemes. Such a 
hybrid scheme, called neurules, is presented as an example. However, our final 
argument is that only multiple representations or a multi-paradigm environment 
would be adequate for the development of an IES. This paper is an extension of 
(Hatzilygeroudis & Prentzas, 2004b). 

The chapter is organized as follows. Section 2 specifies the KR requirements. 
Section 3 presents a number of KR schemes and how they satisfy the requirements. 
Section 4 makes a comparison of the KR schemes and, finally, Section 5 concludes. 

KR REQUIREMENTS 
 
Introductory Aspects 
 
Like in other knowledge-based systems, we distinguish three main phases in the life 
cycle of an IES, the construction phase, the operation phase and the maintenance 
phase. The main difference is that an IES requires a great deal of feedback from the 
users and iteration between phases. Three types of users are involved: domain experts, 
knowledge engineers and learners. Each type of user has different requirements for 
the KR scheme(s) to be used. We call them user requirements, since they mainly 
concern the needs of the users. 

Some of the user requirements are related to the general requirements for a KR 
language, such as efficiency and naturalness. Efficiency mainly refers to how quickly 
conclusions are drawn, whereas naturalness refers to how easy is to construct and 
understand sentences of a KR language as well as inference steps (Reichgelt, 1991). 

 

 
 

Figure 1. The Basic Structure of an Intelligent Educational System 
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On the other hand, the system itself imposes a number of KR requirements. An IES 
(as well as a WBIES) consists of three main modules (see Fig. 1): (a) the domain 
knowledge, which contains the teaching content and meta-information about the 
subject to be taught, (b) the user model, which records information concerning the 
user, and (c) the pedagogical model, which encompasses knowledge regarding 
various pedagogical decisions. Each component imposes different KR requirements. 
We call them system requirements, since they are related to the system components. 

 
User Requirements 
 
Domain Expert 
 
The domain expert provides knowledge concerning the application domain. He/she is 
a person who knows in-depth the possible problems, the way of dealing with them as 
well as various practices obtained through his/her experience. In IESs, the domain 
experts are mainly the tutors. Tutors are highly involved in the construction and 
maintenance stages. However, in most cases, their relation to AI or even to computers 
is rather superficial. This may potentially make them restrained in their interaction 
with the knowledge engineer. Furthermore, the teaching theories to be incorporated in 
the system are rather difficult to express.  

So, it is evident that one main requirement that tutors impose is naturalness of 
representation. Naturalness facilitates interaction with the knowledge engineer and 
helps the tutor in overcoming his/her possible restraints with AI and computers in 
general. In addition, it assists the tutor in proposing updates to the existing 
knowledge.  

Also, checking validity of the represented knowledge is a tedious task, where the 
expert is involved. So, the capability of providing explanations is another requirement 
from the expert, which is of great help in checking represented knowledge. 

 
Knowledge Engineer 
 
The knowledge engineer manages the development of an IES and directs its various 
phases. The main tasks of the knowledge engineer are: acquire knowledge from the 
domain expert and/or other knowledge sources, select the implementation tools and 
effectively represent the acquired knowledge. He/she is the one who chooses (or 
designs) the KR scheme to be employed. Finally, he/she is who maintains the 
produced knowledge base.  

Obviously, naturalness is again a basic requirement. The more natural the KR 
scheme, the easier it is for the knowledge engineer to transfer expert knowledge. 
Furthermore, tutors, during construction, may frequently change part (small or big) of 
the represented knowledge. Also, even if the system's operation is satisfactory, 
changes and updates of the incorporated expert knowledge may be required. This 
demands ease of updates. 

Additionally, the KR scheme should facilitate the knowledge acquisition (KA) 
process. KA is usually a bottleneck in the development of a knowledge-based system. 
Facilitation can be achieved if the KR scheme allows acquiring knowledge from 
alternative (to experts) sources, such as databases of empirical data or past cases, in 
an automated or semi-automated way. So, ease of knowledge acquisition is another 
requirement. 
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Usually, in developing knowledge-based systems, a prototype is constructed before 
the final system. The prototype includes a small part of the whole knowledge. The rest 
of it is gradually added to the system. This is called incremental development of the 
system and it’s a desirable feature. Furthermore, testing the continually incremented 
prototype can call for arduous efforts. In this context, two important factors are the 
inference engine performance and the capability of providing explanations. Efficient 
inferences reduce the time spent by the knowledge engineer. Also, provision of 
explanations is important, because it can assist in the location of deficiencies in the 
knowledge base. 

 
End-User 
 
An end-user (learner) is the one who uses the system in its operation stage. The basic 
requirement for KR, from the point of view of end-users, concerns time efficiency. 
IESs are highly interactive knowledge-based systems requiring time-efficient 
responses to the users' actions, which mainly depend on inference engine responses. 
In case of WBIESs, time performance is even more crucial, since the Web imposes 
additional time constraints, due to multiple users and the restricted communication 
bandwidth. Besides efficiency, the inference engine should also be able to reach 
conclusions from partially known inputs. During a learning session, the user may not 
be able or doesn’t want to provide values for all parameters. However, the system 
should be able to make inferences without having all inputs known. 
 
System Requirements 
 
Types of Knowledge 
 
System requirements refer to representation of the knowledge involved in the 
components of an IES. These requirements are mainly based on the required type(s) 
of involved knowledge, since different types of knowledge are more easily 
represented in different KR schemes (Reichgelt, 1991).  

A first type of knowledge is called structural knowledge. Structural knowledge is 
concerned with types of entities (i.e. concepts, objects, etc) and how they are 
interrelated. It reflects the structure of the domain knowledge. Often, those 
relationships are hierarchical, i.e. they concern generalization/specialization 
relationships, e.g. “math is a form of an academic course, which itself is a form of a 
course”. Another type of knowledge is relational knowledge. Relational knowledge 
concerns relations between entities of the domain. Those relations may be causal 
relations, e.g. “smoking causes cancer” or dependency relations, e.g. “mark depends 
on the number of attempts and the help asked”.  

From another point of view, there is heuristic knowledge. It is knowledge in the 
form of “rules of thumb”, practical knowledge about how to solve problems based on 
experience. Sometimes, knowledge is not clear enough, but uncertain or vague. For 
example, values ‘low’ and ‘medium’, used to characterize the knowledge level of a 
student, are vague, since their boundaries are not clear. Also, knowledge may be not 
certain, but may have a degree of certainty. 
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Domain Knowledge 
 
The domain knowledge module contains knowledge related to the subject to be taught 
as well as the actual teaching material. It usually consists of two parts: (a) knowledge 
model and (b) course units. Knowledge model refers to the basic concepts that 
constitute the subject to be taught and the types of relationships between them, e.g. 
the ‘prerequisite’, ‘specialization’, etc relationships. Finally, they are associated with 
course units, which constitute the teaching content. 

Usually, concepts are organized in a type of structure. So, it is evident that a the 
KR scheme should be able to naturally represent structural and relational knowledge. 

 
User Model 
 
The user model (or student model) records information about the learner’s knowledge 
state and traits. This information is vital for the system to be able to adapt to the user's 
needs. The process of inferring a user model from observable behavior is called 
‘diagnosis’. There are many possible user characteristics that can be recorded in the 
user model. One of them is the knowledge that he/she has learned. In this case, 
diagnosis refers to an estimation (or evaluation) of learner’s knowledge level. 
Diagnosis of other characteristics such as, learning ability and concentration, means 
estimations based on learner behavior while interacting with the system.  

Diagnosis of learner’s characteristics is not a clear process. Also, there is not a 
clear-cut between various levels (values) of the characteristics. So, it is quite obvious 
that a representation scheme for the user model should be able to deal with uncertain 
and vague knowledge. Also, representation of heuristic knowledge is needed to make 
estimations about the values of the student characteristics.  

 
Pedagogical Model 
 
The pedagogical model represents the teaching process. It provides the knowledge 
infrastructure in order to tailor the presentation of teaching content according to the 
information recorded in the user model. The pedagogical model of a ‘classical’ IES 
mainly performs the following tasks: (a) course planning (or knowledge sequencing), 
(b) teaching method selection and (c) learning content selection. The main task in (a) 
is planning, that is selecting and appropriately ordering the concepts to be taught. The 
main task involved in (b) and (c) is also selection, e.g. how a teaching method is 
selected based on the learner’s state and the learning goal. This is a reasoning process 
whose resulting conclusion depends on the logical combinations of the values of the 
user model characteristics, which reminds of heuristic knowledge. Furthermore, 
selection is not always clear, so uncertain knowledge representation may be required. 

The above analysis of the requirements of knowledge representation for an IES is 
depicted in Tables 1 and 2. 

KNOWLEDGE REPRESENTATION SCHEMES 
 
In this section, we investigate satisfaction of the requirements specified above by 
various KR schemes. We distinguish between single and hybrid KR schemes. 
 
Single Schemes 
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Structured Representations 
 
Semantic nets and their descendants (frames or schemas) (Negnevitsky, 2002, ch. 5) 
represent knowledge in the form of a graph (or a hierarchy). Nodes in a semantic net 
graph represent concepts and the edges represent relations between the concepts. 
Nodes in a frame hierarchy also represent concepts, but they have internal structure 
that describes the corresponding concept via a set of attributes. They are very natural 
and well suited for representing structural and relational knowledge. They can also 
make efficient inferences for small to medium graphs (hierarchies). However, it is 
difficult to represent heuristic knowledge, uncertain knowledge and make inferences 
from partial inputs. Also explanations are not provided and knowledge updates are 
difficult. Conceptual Graphs are similar to semantic nets, whereas ontologies (Staab 
and Studer, 2004) refer to a representation scheme similar to frames, but are more 
restrictive.  

In IESs, semantic networks have been used mainly for the representation of the 
domain knowledge structure.  

 
Table 1. Users Requirements 

USERS REQUIREMENTS 
Expert Engineer Learner 

• naturalness 
• explanations 

 

• naturalness 
• ease of updates 
• incremental 
    development 
• ease of knowledge 
    acquisition 
• explanations 

• efficient inferences 
• partial input 

inferences 
 

 
Table 2. System Requirements 

SYSTEM REQUIREMENTS 
Domain Knowledge User Model Pedagogical Model 
• structural 

knowledge 
• relational 

knowledge 

• vague knowledge 
• uncertain 

knowledge 
• heuristic knowledge 

• heuristic knowledge 
• uncertain 

knowledge 

 
Symbolic Rules 
 
Symbolic rules are one of the most popular KR methods (Negnevitsky, 2002, ch. 2). 
They represent general domain knowledge in the form of if-then rules: if 
<conditions> then <conclusion>, where the term <conditions> represents the 
conditions of a rule, whereas the term <conclusion> represents its conclusion. The 
conditions are connected with one or more logical operators such as ‘and’, ‘or’ and 
‘not’. The conclusion of a rule is derived when the logical function connecting its 
conditions results to true. Expert systems constitute the most well known type of rule-
based systems. The main parts of a typical expert system are: rule base, inference 
engine, working memory and explanation mechanism.  

The inference engine uses the knowledge in the rule base as well as facts about the 
problem at hand to draw conclusions. Typically, facts are provided by the user during 
inference. There are two main inference methods: backward chaining (guided by the 
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goals) and forward chaining (guided by the data). The explanation mechanism 
provides explanations regarding the drawn conclusions. 

Rules are natural (easy to comprehend) and rule-base updates (removing/inserting 
rules) can be easily made. Also, incremental development of a rule base is a quite 
natural process. In addition, heuristic knowledge is naturally represented by rules. 
However, a major drawback is the difficulty in acquiring them. KA may turn out to be 
a bottleneck. Furthermore, the acquired rules may be imperfect. Efficiency of the 
inference process depends on the length of the inference chains. Additionally, 
conclusions cannot be derived if some of the inputs is unknown. Finally, pure rules 
cannot represent uncertain or vague knowledge and are not suitable for representing 
structural and relational knowledge.  

Symbolic rules have been used in IESs mainly to diagnose the learner’s 
characteristics and to perform various pedagogical tasks (Vassileva, 1998; Simic & 
Devedzic, 2003). The system described in (Vassileva, 1998) uses heuristic knowledge 
in the form of rules (classified into groups with different functionality) to manage 
course generation based on learner’s performance and the domain knowledge. 

 
Case-Based Representations 
 
Case-based representations (Leake, 1996) store a large set of past cases with their 
solutions in the case base and use them whenever a similar new case has to be dealt 
with. A case-based system performs inference in four phases: (i) retrieve, (ii) reuse, 
(iii) revise and (iv) retain. In the retrieval phase the most relevant stored case(s) to the 
new case is(are) retrieved. Similarity measures and indexing schemes are used in this 
context. In the reuse phase, the retrieved case is combined with the new case, to create 
a solution. The revise phase validates the correctness of the proposed solution. 
Finally, the retain phase decides on retention (or not) of the new case.  

Cases are usually easy to obtain and, unlike other schemes, case acquisition can 
also take place during the system’s operation. Cases are natural. Explanations cannot 
be provided as straightforward as in rule-based systems, due to the similarity 
functions. Conclusions can be reached even if some of the inputs are not known, 
through similarity to stored cases. Updates can be easily made. However, the 
efficiency of the inference process depends on the size of the case base. Finally, cases 
are not suitable for representing structural, uncertain and heuristic knowledge.  

In IESs, case-based reasoning has been used in the user model to assess the 
learner’s knowledge and in the pedagogical model to perform instructional tasks 
(Shiri et al, 1998; Gilbert, 2000; Guin-Duclosson, 2002). The approach described in 
(Guin-Duclosson, 2002) uses case-based reasoning to teach problem-solving methods. 
The system enables to model the knowledge observed in learners by explicitly 
defining a problem classification, the reformulation and the solution knowledge 
associated with it. According to that model, an expert in the teaching domain defines 
a hierarchy of problem classes and reformulation knowledge for the classification of a 
new problem based on discriminating attributes. 

 
 
 

Neural Networks 
 
Neural networks represent a totally different approach to AI, known as connectionism 
(Gallant, 1993). A neural network consists of many simple interconnected processing 
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units called neurons. Each connection from neuron uj to neuron ui is associated with a 
numerical weight wij corresponding to the influence of uj to ui. Τhe output of a neuron 
is based on its inputs and corresponding weights. Usually, neural networks are 
organized in three levels: input, intermediate (or hidden) and output level. The 
weights of a neural network are determined via a training process via empirical data. 
Input neurons are fed with the input values of the problem. These values are 
propagated through the network and produce the outputs by activating the 
corresponding neurons. 

Neural networks are very efficient in producing conclusions, since inference is 
based on numerical calculations and can reach conclusions based on partially known 
inputs, due to their generalization ability. On the other hand, neural networks lack 
naturalness of representation, that is the encompassed knowledge is 
incomprehensible, and explanations for the reached conclusions cannot be provided. 
It is also difficult to make structural updates to specific parts of the network. Neural 
networks do not possess inherent mechanisms for representing structural, relational 
and uncertain knowledge. Heuristic knowledge can be represented to some degree via 
supervised training.  

The system in (Tchetagui & Nkambou, 2002) employs a neural network to classify 
the learner into a knowledge level. 

 
Belief Networks 
 
Belief networks (or probabilistic nets) (Russell & Norvig, 2003, ch. 14) are graphs, 
where nodes represent statistical concepts and links represent mainly causal relations 
between them. Each link is assigned a probability, which represents how certain is 
that the concept where the link departs from causes (leads to) the concept where the 
link arrives at. Belief nets are good at representing causal relations between concepts. 
Also, they can represent heuristic knowledge to some extend. Furthermore, they can 
represent uncertain knowledge through the probabilities and make relatively efficient 
inferences (via computations of probabilities propagation). However, estimation of 
probabilities is difficult, making KA process a problem. For the same reason, it is 
difficult to make updates. Also, explanations are difficult to produce, since the 
inference steps cannot be easily followed by humans. Furthermore, their naturalness is 
reduced. 

In IESs, belief networks have been used mainly in user modeling (Jameson, 1995; 
Vanlehn & Zhendong, 2001; Tchetagui & Nkambou, 2002). The system in (Tchetagui 
and Nkambou, 2002) uses Bayesian reasoning to aggregate performance values 
throughout the network of the domain knowledge structure. 

 
Hybrid Schemes 
 
Hybrid schemes are integrations of two or more single KR schemes. In this section we 
focus on the most popular ones. 
 
 
Fuzzy Rules 
 
Fuzzy logic is good at representing imprecise and fuzzy terms, like ‘low’ and ‘high’. 
Fuzzy logic extends traditional logic and set membership by defining membership 
functions over the range [0.0, 1.0], where 0.0 denotes absolute falseness and 1.0 
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absolute truth. Fuzzy expert systems constitute the most popular application of fuzzy 
logic. In such systems, sets of fuzzy rules (Dubois et al, 1993) are used to infer 
conclusions based on input data. Fuzzy rules include fuzzy variables. Inference 
process includes three phases: fuzzification of inputs (via membership functions), 
application of fuzzy rules and defuzzification (to produce the output). 

Given the above, fuzzy rules are good at representing vagueness. However, fuzzy 
rules are not as natural as symbolic rules (due to membership functions), fact that 
complicates the KA process and the updates to the rule base. It is difficult to specify 
membership functions. Inference is more complicated and less natural than in simple 
rule-based reasoning, although its overall performance is not worse (because a fuzzy 
rule corresponds to more than one simple rule). Provision of explanations is feasible, 
but not all reasoning steps can be explained. 

Fuzzy rules have proven quite helpful in the user modeling component of various 
ITSs (Hwang, 1998; Nkambou 1999). The Web-Based ITS described in (Hwang, 
1998) employs a fuzzy expert system to assess learner characteristics and guide the 
learning process. The user model records fuzzy characteristics (like knowledge level, 
concentration, etc) and non-fuzzy characteristics (like total session time, effective 
learning time, etc.). The non-fuzzy characteristics are used to determine the values of 
the fuzzy ones. Fuzzy rules are used for subject material selection. 

 
Connectionist Rule-Based Representations 
 
A number of neuro-symbolic approaches have been developed, but we concentrate 
here on connectionist expert systems, because they satisfy more requirements. 
Connectionist expert systems (Gallant, 1993) combine neural networks with rule-
based expert systems. The knowledge base is a network whose nodes correspond to 
domain concepts. Dependency information regarding the concepts is used to create 
links among nodes. The network’s weights are calculated through a training process 
using a set of training patterns. Besides the knowledge base, connectionist expert 
systems also consist of an inference engine and an explanation mechanism. Compared 
to neural networks, they offer more natural representation and can provide some type 
of explanation. Naturalness is enhanced due to the fact that most of the nodes 
correspond to domain concepts. 
 
Neurofuzzy Representations 
 
There are various ways to integrate neural networks and fuzzy logic (Nauck et al, 
1997). We are interested in integrations where the two component representations are 
indistinguishable. Such integrations are the fuzzy neural networks and the hybrid 
neuro-fuzzy representations. Fuzzy neural networks are fuzzified neural networks: 
they retain the basic properties and architectures of neural networks and “fuzzify” 
some of their elements (i.e., input values, weights, activations, outputs). In a hybrid 
neuro-fuzzy system both, fuzzy techniques and neural networks, play a key role. Each 
does its own job in serving different functions in the system. Hybrid neuro-fuzzy 
systems seem to satisfy KR requirements in a greater degree than fuzzy neural 
networks. They combine more and in a more satisfactory way the benefits of their 
component representations.  

The system described in (Magoulas et al, 2001) is an Adaptive Educational 
Hypermedia System, which uses neural and fuzzy modules to accomplish its tasks. 
Neural and fuzzy modules are used in the domain knowledge, the learner evaluation 
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and the pedagogical model. This hybrid approach enables the representation of 
incomplete, imprecise and vague information about the learner and also exploits the 
generalization capability of neural networks. 

 
Integrations of Rules and Cases 
 
Another trend to hybrid knowledge representation is the integrations of rule-based 
reasoning with case-based reasoning (Golding and Rosenbloom, 1996). We refer here 
to approaches where one method (either rules or cases) dominates and not to balanced 
approaches, because reasoning in them is more complicated. In such systems, 
naturalness of the underlying components is retained. Compared to ‘pure’ case-based 
reasoning, their key advantage is the improvement in the performance of the inference 
engine and the ability to represent heuristic and relational knowledge. Furthermore, 
the synergism of rules and cases can cover up deficiencies of rules (improved 
knowledge acquisition) and also enable partial input inferences. The existence of rules 
in such hybrid schemes makes updates more difficult than ‘pure’ case-based 
representations. Also explanations can be provided but not as easily as in pure rule-
based representations, given that similarity functions are still present.  
 
Description Logics 
 
Description Logics (DLs) (Baader et al, 2002) combine aspects from frames, semantic 
nets and logic. They consist of two main components, the Tbox and the Abox. Tbox 
contains definitions of concepts and roles (i.e. their attributes), called terminological 
knowledge, whereas ABox contains logical assertions about concepts and roles, called 
assertional knowledge. DLs offer clear semantics and sound inferences. They are 
usually used for building and maintaining ontologies as well as for classification tasks 
related to ontologies. Also, DLs can be built on existing Semantic Web standards 
(XML, RDF, RDFS). So, they are quite suitable for representing structural and 
relational knowledge. Also, as logic-based, they can represent heuristic knowledge. 
Furthermore, their Tboxes can be formally updated. Their representation is natural, 
but not as much as that of symbolic rules. Inferences in DLs may have efficiency 
problems. Explanations cannot be easily provided. 
 
Neurules 
 
Syntax and Semantics 
 
Neurules are a type of hybrid rules integrating symbolic rules with neurocomputing 
(Hatzilygeroudis and Prentzas 2000 & 2001a). In contrast to other hybrid approaches, 
the constructed knowledge base retains the modularity of rules, since it consists of 
autonomous units (neurules), and also retains their naturalness in a great degree, since 
neurules look much like symbolic rules.  

The form of a neurule is depicted in Figure 2a. Each condition Ci is assigned a 
number sfi, called its significance factor. Moreover, each rule itself is assigned a 
number sf0, called its bias factor. Internally, each neurule is considered as an adaline 
unit (Fig. 2b). The inputs Ci (i =1,...,n) of the unit are the conditions of the rule. The 
weights of the unit are the significance factors of the neurule and its bias is the bias 
factor of the neurule. Each input takes a value from the following set of discrete 
values: [1 (true), 0 (false), 0.5 (unknown)]. The output D represents the conclusion of 
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the rule. The output can take one of two values (‘-1’, ‘1’) representing failure and 
success of the rule respectively.  

The general syntax of a condition Ci and the conclusion D is: 

<condition/conclusion>::= <variable> <predicate> <value>  

where <variable> denotes a variable, e.g. ‘mark-level’, ‘solution-attempts’, etc. 
<predicate> denotes a symbolic (is, isnot) or a numeric (<, >, =) predicate (not used in 
conclusions). <value> denotes a value (a symbol or a number). The significance 
factor of a condition represents the significance (weight) of the condition in drawing 
the conclusion. Table 3 presents an example neurule, used in assigning examination 
marks to a student. 
 

 

Figure 2. (a) Form of a neurule (b) corresponding adaline unit 

Neurules can be constructed either from symbolic rules (Hatzilygeroudis and 
Prentzas 2000), thus exploiting existing symbolic rule bases, or empirical data 
(Hatzilygeroudis and Prentzas 2001a). Each adaline unit is individually trained via the 
Least Mean Square (LMS) algorithm.  

 
Table 3. A neurule for assigning examination marks 

(-9.7) if assistance-times is 1 (4.7), 
             assistance-times is 0 (4.6), 
             solution-attempts is 2 (4.6), 
             requested-examples is >1 (3.2), 
             requested-examples is 1 (1.4) 
          then mark is average 

 
A neurule-based system consists of the same basic components as a rule-based 

system. The neurule-based inference engine is based on a backward chaining strategy 
and uses neurules and facts (typically acquired from the user) to draw conclusions. 
Evaluation of a neurule is based on special neurocomputing measures 
(Hatzilygeroudis and Prentzas 2001b). A neurule fires if the output of the 
corresponding adaline unit is computed to be ‘1’ after evaluation of its conditions. A 
neurule is said to be ‘blocked’ if the output of the corresponding adaline unit is 
computed to be ‘-1’ after evaluation of its conditions. 

Experiments have shown that the neurule-based inference process does better not 
only than simple rules but also than other similar systems, like MACIE (Gallant, 
1993). Neurules are also associated with an explanation mechanism, capable of 
providing explanations of various types in the form of if-then rules. Experiments have 
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shown that neurules explanation mechanism produces more natural explanations with 
less rules (Hatzilygeroudis & Prentzas 2001b). 

 
Using neurules in an ITS 
 
We constructed an intelligent tutoring system using neurules as its main knowledge 
representation scheme (Prentzas et al, 2002; Hatzilygeroudis & Prentzas 2004a). 
Neurules were used for representing knowledge in the user modeling unit and the 
pedagogical unit. In the user modeling unit, neurules were used for user classification 
in some stereotype and for student evaluation. In the pedagogical unit, they were used 
for three tasks: method selection, concept selection and unit selection. There is a 
neurule-based expert system, which make pedagogical decisions during the learning 
process, with a neurule-based inference engine and a neurule base consisting of five 
partial neurule bases, distributed between the user modeling and the pedagogical unit. 

An important characteristic of the ITS is the existence of a special unit, called 
knowledge management unit (KMU). KMU has facilities for (a) acquiring knowledge 
from various sources (experts, existing symbolic rule bases, empirical data), (b) 
updating the knowledge stored in the neurule bases. 

The use of neurules in the development of the ITS revealed a number of benefits: 
• Neurules can be acquired in a semi-automated way from various sources, such as 

symbolic rules, empirical data or an expert. This is very important for IESs, 
given that KA is harder than other systems, due to the existence of more than one 
knowledge-based module. 

• Neurules support incremental development of the neurule bases. One can easily 
add new neurules to or remove old neurules from a neurule base. This is difficult 
for other hybrid approaches.  

• Neurules are space-efficient: produce quite smaller knowledge bases compared 
to simple rules. The size reduction in the ITS was 35-40%.  

• Neurules can make robust inferences. In contrast to simple rules, neurules can 
derive conclusions from partially known inputs. This feature is useful, because, 
during a learning session, values of some parameters may be unknown.  

• Neurules provide a more time-efficient inference engine than simple rules. This 
is very important, since an IES is a highly interactive knowledge-based system.  

• Neurule bases can be efficiently updated, i.e. without thorough reconstruction of 
them. This is quite helpful during the construction and maintenance stage, where 
many updates are required. Knowledge base updates constitute a bottleneck for 
other hybrid approaches. 

Despite the above benefits, we experienced some difficulties too. First, we could not 
use neurules to represent domain knowledge, due to its structural nature. So, we had 
to rely on degenerate (hence weak) representation methods, like relational tables. 
Another difficulty was that we could not represent vague knowledge. So, we had to 
use clear cuts among various classes of a test mark level or the knowledge level of a 
student (low, average, high, etc). 

COMPARISON OF KR SCHEMES 
 
Table 4 compares the KR schemes discussed in the previous sections, as far as 
satisfaction of KR requirements for IESs are concerned. Symbol ‘-‘ means 
‘unsatisfactory’, ‘√-’ average, ‘√’ ‘good’ and ‘√+’ ‘very good’. 
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A conclusion that can be drawn from the table is that none of the single or hybrid 
schemes satisfies all the requirements for an IES. However, some of them satisfy the 
requirements of one or two modules of an IES. So, taking into account only the 
learner’s and system requirements, one can say that semantic nets, frames, description 
logics and belief networks are more suitable for representing knowledge in the 
domain model. Also, fuzzy rules, belief networks and neuro-fuzzy representations are 
more suitable for the student modeling module. Finally, symbolic rules and neurules 
are more suitable for the pedagogical model. Hybrid schemes in general demonstrate 
improvements compared to most or all of their component schemes and therefore are 
preferable. However, a solution to the representational problem of an IES could be the 
use of different representation schemes (single or hybrid) for the implementation of 
different IES modules. Hence, the idea of a multi-paradigm development environment 
seems to be interesting. 

 
Table 4. Comparison of KR schemes 
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Semantic 
nets/frames √+ √- √+ - √ - √+ √+ - - - 

Symbolic rules √+ √+ √ √+ √- - - √- - - √+ 
Case-based 
representations √+ √+ √ √ √+ √ - √ - - - 

Belief networks √- - √+ - √- - √ √+ √+ √- √- 
Neural networks - - √+ - √+ √+ - √- - - √- 
Fuzzy rules √ - √ - √- - - √- √- √+ √+ 
Connectionist 
expert systems √- √- √+ √- √+ √+ - √- - - √- 

Neurofuzzy 
representations  √- - √ - √ √- - √- √- √+ √ 

Cases and rules √+ √ √ √ √ √ - √ - - √ 
Description logics √ √- √- √- √ - √+ √+ - - √ 
Neurules √ √ √+ √+ √+ √+ - √- - - √+ 

 

CONCLUSIONS 
 
In this paper, we make an effort to define requirements for knowledge representation 
in an IES. This work was motivated by the fact that we found symbolic rules 
inadequate in an effort to construct an ITS. The requirements concern all stages of an 
IES’s life cycle (construction, operation and maintenance), all types of users (experts, 
engineers, learners) and all its modules (domain knowledge, user model, pedagogical 
model). According to our knowledge, such requirements have not been defined yet in 
the IES literature. However, we consider them of great importance as they can assist 
in choosing the KR schemes for representing knowledge in the components of an IES. 
To this end, we briefly present and compare various KR schemes. Our decision about 
the satisfaction level of a requirement by a KR scheme is based on advanced basic 
research results from the literature. 

It appears that various hybrid approaches to KR can satisfy the requirements in a 
greater degree than that of single representations. The use of hybrid approaches to 
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knowledge representation in IESs can become a popular research trend, although, till 
now, few IESs employ hybrid KR schemes. Another finding is that there is not a 
hybrid scheme that can satisfy the requirements of all of the modules of an IES, but 
each one individually. So, multiple representations or a multi-paradigm representation 
environment could provide a solution. 
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