

Published in the Proceedings of Third Starting AI Researchers’ Symposium (STAIRS-
2006), L. Ponserini, P. Peppas and A. Perini (Eds), IOS Press, 2006, 96-107.

FUNEUS: A neurofuzzy approach based
on fuzzy adaline neurons

Constantinos KOUTSOJANNIS & Ioannis HATZILYGEROUDIS

Department of Computer Engineering & Informatics, School of Engineering,
University of Patras, Hellas (Greece)

Abstract. Today hybrid computing is a popular framework for solving
complex problems. If we have knowledge expressed in rules, we can build an
Expert System, and if we have data, or can learn from stimulation (training)
then we can use Artificial Neural Networks. In this paper we present the
FUzzy NEUrule System (FUNEUS) which is a Neuro Fuzzy approach based
on fuzzy Adaline neurons and uses Differential Evolution for optimization of
membership functions. According to previous Neuro-fuzzy approaches and a
well-defined hybrid system HYMES, FUNEUS is an attempt to the direction
for integration of neural and fuzzy components with Differential evolution.
Despite the fact that it remains difficult to compare neurofuzzy systems
conceptually and evaluate their performance, early experimental results
proved a promising performance and the need for further evaluation in other
application domains.

Key words. Hybrid systems, Neurofuzzy architecture, Differential
evolution, fuzzy adaline

1. Introduction

Hybrid systems mix different methods of knowledge engineering and make them
“work together” to achieve a better solution to a problem, compared to using a single
method for the same problem [1, 2]. Hybrid connectionist production systems
incorporate artificial neural networks (ANNs) into production rules with respect to
approximate reasoning and learning [2, 3]. Fuzzy inference modules are incorporated
into production rules in a similar way [4, 5]. Today Neuro-Fuzzy (NF) computing is a
popular framework for solving complex problems. If we have knowledge expressed in
linguistic rules, we can build a Fuzzy Expert System (FIS), and if we have data, or can
learn from stimulation (training) then we can use ANNs. For building a FIS, we have to
specify the fuzzy sets, fuzzy operators and the knowledge base. Similarly for
constructing an ANN for an application the user needs to specify the architecture and
learning algorithm. An analysis reveals that the drawbacks pertaining to these
approaches seem complementary and therefore it is natural to consider building an
integrated system combining the concepts. While the learning capability is an
advantage from the viewpoint of FIS, the formation of linguistic rule base will be
advantage from the viewpoint of ANN [4, 5]. Interestingly this synergy still becomes a
target yet to be satisfied. The essence of the successful synergy relies on the retention
of the well-defined identity of the two contributing technologies. In the most systems

[FuzzyCOPE, ANFIS, NEFCLASS, FUNN etc] one of the two technologies becomes
predominant resulting a commonly visible accuracy-interpretability trade-off [6, 7, 8].
Generally, because of the approximation abilities are easier to be quantified and
eventually to be scientifically or technologically realized, the usual result is a tendency
toward for far attention being placed on the neural side of the most NF systems with
the approximation capabilities being highly “glorified” even supported with
Evolutionary Programming (EP) techniques and the interpretation abilities being
quietly reduced (FUZZNET, FNES, FALCON, ANFIS, NEFCON, FINEST, FuNN,
NEFCLASS, etc) [4, 3, 5]. As a guideline, for NF systems to be highly intelligent some
of the major requirements are: fast learning (memory based - efficient storage and
retrieval capacities), on-line adaptability (accommodating new features like inputs,
outputs, nodes, connections etc), achievement a low global error rate and
computationally inexpensive [3, 4, 7]. The data acquisition and pre-processing training
data are also quite important for the success for all NF systems [8, 9]. The underlying
conjecture of the previous is that the future NF systems should be constructed on a
simple possessing unit [4]: Fuzzy logic Neuron (FN) that include fuzzy data and fuzzy
logic operations in its’ unit, the inputs and/or the weights are also expressed in terms of
membership functions and whose transparency and learning abilities are accentuated to
highest possible level as already proposed in the literature [3, 10].
In this paper we introduce fuzzy neurules a kind of rules that incorporate fuzzy Adaline
units for training and adaptivity purposes. However, pre-eminence is still given to the
symbolic component. Thus, the constructed knowledge base retains the modularity of
fuzzy rules, since it consists of autonomous units (fuzzy neurules), and their naturalness,
since they look much like symbolic rules. In previous papers, we have also described a
similar method included in HYMES for generating neurules directly from empirical
(training) data [2]. In this paper we present and evaluate a new architecture, called
FUNEUS, in order to work with fuzzy data. Preliminary experimental results provide
promising performance.
The structure of the paper is as follows. Section 2 presents the hybrid connectionist
system and the corresponding architecture. Section 3 presents the basic ideas and
architecture of fuzzy neurules. In Section 4, the system architecture and parameter
adjustment of FUNEUS is described. In Section 5 the hybrid inference mechanism is
presented. Section 6 contains experimental results for our model validation. Finally
Section 7 discusses related work.

2. Low level Hybrid Systems and Fuzzy Neurules

A hybrid system is a mixture of methods and tools used in one system which are
loosely [1, 4] or tightly coupled [1, 4] from the functional point of view and
hierarchical [3], flat [3], sequential [3, 4] or parallel [3, 4] from the architectural point
of view. Additionally there are systems that are blended at a low structural and
functional level that they are not separable from functional and structural point of view
[3, 4, 6]. The most of Low level Hybrid Connectionist Systems models use variants of
McCulloch and Pitt’s neurons to build a network.

2.1 Fuzzy Neurules
2.1.1 Symbolic Rules in Neural Networks (NN): Connectionist Expert Systems
Building a connectionist rule base is possible not only by training a neural network
with a set of data examples but by inserting existing rules into a neural network

structure [5, 7]. This approach brings advantages of connectionism, that are: learning,
generalization, modularity, robustness, massive parallelism etc., to the elegant methods
for symbolic processing, logical inferences and global-driven reasoning. Both
paradigms can be blended at a low, neuronal level and structural knowledge can built
up in a neuron and in a NN realized as a connectionist rule-based system [3. 4].

2.1.1.1 Representing symbolic knowledge as NN
Representation of symbolic knowledge in the form of production rules, in a NN
structure requires appropriate structuring of the NN and special methods. A NN may
have fixed connections, that is that NN cannot learn and improve its knowledge or
adaptable connections, that is that NN can learn in addition to its inserted structured
knowledge. A great advantage to using NNs for implementing rule-based systems is the
capacity that they provide for approximate reasoning. It is true only if the neurons used
in the network allow grading. If, they are binary, only exact reasoning is possible [8, 9].

2.1.1.2 Neurons and NNs that represent Simple Symbolic Rules
A Boolean propositional rule of the form of:

IF x1 and x2 and … xn THEN y
Where xi (i=1,2,…, n) and y are Boolean propositions, can be represented in a binary
input - binary output neuron which has a simple summation input function and an
activation threshold function f. Similarly, the Boolean propositional rule:

IF x1 or x2 or … xn THEN y
will be realized in a similar binary neuron but with different connection weights and
thresholds [7]. The neurons cannot learn. These two simple neurons can be used for
building NNs that represent a whole set of rules, but which are not adaptable. Symbolic
rules that contain different types of uncertainties can also be realized in a connectionist
structure. These include rules where uncertainty is expressed by probabilities and in
this case is set in such a way that it calculates conditional probabilities as well as rules
with confidence factors that is:

IF x1 is A1 and x2 is A2 and … xn is An THEN B (Cf)
Can be realized either by [5]:

1. Inserting the rule into the connections of n-input, one output neuron or
2. Applying a training procedure to e neuron with training examples, whose input

and output values represent certainties for existing facts to match the condition
elements and confidence for the inferred conclusion.

Realizing that more than one rule in a single neuron of the Perceptron-type may
not be appropriate, minded the restrictions of Perceptron neurons pointed out by a
number of authors [5, 7], neurules presented in [2] have been developed as a kind of a
connectionist production system that has incorporated Adaline-type neurons to
represent sets of simple symbolic rules. In the next sections we describe fuzzy neurules
that are a kind of fuzzy rules in a fuzzy expert system incorporated Fuzzy-Adaline
neurons to represent sets of simple fuzzy rules.

2.2 Integrating Fuzzy Neurules with Fuzzy ADALINE neurons
2.2.1 The Fuzzy Logic neuron
A fuzzy neuron has the following feature, which distinguish it from the ordinary

types of neurons [4, 5]:
• The inputs of the neuron x1, x2, … xn represent fuzzy labels of the fuzzy input

variables.

• The weight are replaced by the membership functions µi of the fuzzy labels xi
(i=1,2,…, n)

• Excitatory connections are represented by MIN operation and inhibitory
connections by fuzzy logic complements followed by MIN operation.

• A threshold level is not assigned.
In fuzzy neuron there is no learning. The membership functions attached to the

synaptic connections do not change. Neo-fuzzy neuron [10] that is a further
development of the fuzzy neuron, with the new features of:

a. the incorporated additional weights which are subject to change during training
and

b. it works with standard triangular membership functions and thus only two
membership functions are activated simultaneously by an input, and consequently

c. have proved faster in training and better in accuracy even than a three-layered
feedforward NN with backpropagation algorithm.

The underlying conjecture of the previous is that the new NF systems should be
constructed in a simple possessing unit: Fuzzy logic Neuron (FN) that include fuzzy
data and fuzzy logic operations in its’ unit, the inputs and/or the weights are also
expressed in terms of membership functions and whose transparency and learning
abilities are accentuated to highest possible level [4]. Types of fuzzy neurons have been
successfully applied to prediction and classification problems [5, 9].

2.2.2 The Fuzzy ADALINE neuron
The Wirdow-Hoff’s ADALINE can be thought of as the smallest, linear building

block of the artificial neural networks. This element has been extensively used in
science, statistics (in the linear regression analysis), engineering (the adaptive signal
processing, control systems), and so on. Recently Fuzzy ADALINE neurons were
developed introducing the following modifications to ADALINEs [6]:

1. The signum-type non-linearity has been replaced by a two-level clipper.
2. The position of the non-linear function block has been shifted inside the loop,

unlike the case of Widrow’s model, where it was on the forward path outside the loop.
3. A provision for stretching the linear portion of the non-linearity has been

incorporated in the model.
In the proposed model, with the input and output constrained in the range [-1, +1], the
unity slope in the nonlinearity of the neuron will fail to yield the desired output
whenever the target signal is higher than the average of the inputs. In order to
circumvent this situation, an adaptive algorithm for adjustment of the slope of the
linear portion in the non-linear clipper function have been developed.
In order fuzzy rules to work in fuzzy environment we incorporated the a “fuzzy” neuron
to produce sets of rules called fuzzy neurules. Each fuzzy neurule is now considered as
a fuzzy adaline unit that has replaced a number of fuzzy rules in the rule base of a fuzzy
system. However, pre-eminence is still given to the fuzzy component. Thus, the
constructed knowledge base retains the modularity of production rules, since it consists
of autonomous units (fuzzy neurules), and their naturalness, since fuzzy neurules look
much like fuzzy rules.

3. Fuzzy neural Networks

 A Fuzzy Neural Network (FNN) is a connectionist model for fuzzy rules
implementation and inference. There is a great variety of architectures and

functionalities of FNN. The FNNs developed so far differ mainly in the following
parameters:
• Type of fuzzy rules implemented that affects the connectionist structure used.
• Type of inference method implemented that affects the selection of different neural

network parameters and neuronal functions, such as summation, activation and
output function. It also affects the way the connection weights are initialized
before training, and interpreted after training

• Mode of operation: that can have one of the three modes a) Fixed mode with fixed
membership functions-fixed set of rules, that is a fixed set of rules inserted in a
network, which performs the inference, but does not change its weights, resulting
to learning and adaptation [5], b) Learning mode with the network is structurally
defined to capture knowledge in a format of fuzzy rules, and after random
initialization and training with a set of data the set of fuzzy rules are finally
extracted from the structured network and c) Adaptation mode where the network
is structurally set according to a set of fuzzy rules and heuristics and then after
training with a set of data updated rules are extracted with: 1. fixed membership
functions – adaptable rules and 2. adaptable membership functions-adaptable
rules.

FNNs have two major aspects: a. the structural that refers to the type of neurons that
are used i.e. the multilayer perceptrons (MLPs) and the radial-basis functions. FuNN is
a characteristic example of adaptable FNNs that uses MLP or backpropagation training
algorithm with adaptable membership functions of the fuzzy predicates and adaptable
fuzzy rules [5].

4. FUNEUS

4.1 FUNEUS: A Hybrid Fuzzy Connectionist Production System
4.1.1 System Structural Components
4.1.1.1 The Fuzzy Neural Network
NF systems could be broadly classified in two types: a) weakly coupled systems

and b) tightly coupled systems [6].

Figure 1: A general diagram of FUNEUS

A weakly coupled NF system employs both a neural net unit and a fuzzy system
unit in cascade. In a tightly coupled system neurons the basic elements of a NN are
constructed amalgamating the composite characteristics of both a neuronal element and
fuzzy logic [4, 11].

4.1.1.2 The GA component

Additionally a Fuzzy-Genetic algorithm synergism is used for membership functions
optimization, that are intuitively chosen in a fuzzy system [6]. Given that the
optimization of fuzzy membership functions may involve many changes to many
different functions, and that a change to one function may effect others, the large
possible solution space for this problem is a natural candidate for a GA based approach
despite many NF approaches that use a gradient descent-learning algorithm to fine-tune
the parameters of the fuzzy systems. GA module for adapting the membership function
parameters acts as a stand-alone system that already have the if-then rules. GA
optimizes the antecedent and consequent membership functions. Differential Evolution
(DE) algorithm here used is a very simple population based, stochastic function
minimizer which is very powerful at the same time turned out to be the best genetic
type of algorithm for solving the real-valued test functions [14].

Figure 2. Membership functions adjustment by GA

The crucial idea behind DE is a scheme for generating trial parameter vectors. For

this architecture evolution of membership functions proceeds at a faster time scale in an
environment usually decided by the problem, the architecture and the inference system.
Here we use evolution for triangular membership functions tuning using a mutation
function as:

Xnew- Xold = F(y+z)
 where x, y, z and F random numbers (with fuzzy or crisp values) and a mutation

function for curves with representation (x (a), y (b)).
The GA used in the system is, in essence, the same as DE genetic algorithm, with

the important exception that the chromosomes are represented as strings of floating
point numbers, rather than strings of bits. According to this NF-GA synergism let x, y
and z be three fuzzy variables and µA (x), µB (x), µC (x) are the three fuzzy membership
functions of the fuzzy variable x with respect to fuzzy sets A, B and C respectively.
Similarly we have the membership functions µA (y), µB (y), µC (y) and µA (z), µB (z),
µC (z) for variables y and z respectively. These functions have been chosen intuitively.
Now for optimization of the membership curves that are isosceles triangles we denote
each side with (x (a) ,y (b)) for each variable. The chromosomes in the present context

thus has 18 fields, two for each membership curve from the input side of the system
and the 1 more field from the desired output side of the system. The crossover and
mutation operations in the present context are realized in convenient way
in correspondence to the specified mutation function, that is not presented here in
details because it is usually a comparison between the system responses F(x,y,z) with
the desired system responses Fd(x,y,z) specified from the application (Fig. 8).

4.1.2 Fuzzy Neurule Base Construction

We use the simple and straightforward method [2] and the proposed method by
Wang and Mendel [16] for generating fuzzy rules from numerical input-output training
data. The task here is to generate a set of fuzzy rules from the desired input-output pairs
and then use these fuzzy rules to determine the complete structure of the rule base. The
algorithm for constructing a hybrid rule base from training data is outlined below:

1. Determine the input and output variables (fuzzy) and use dependency information
to construct an initial fuzzy rule for each intermediate and output variable.

2. Determine the for each initial fuzzy rule from the training data pairs, train each
initial fuzzy rule using its training input-output set and produce the
corresponding fuzzy neurule(s).

3. Put the produced fuzzy neurules into the fuzzy neurule base.

In the sequel, we elaborate on each of the first two steps of the algorithm.

4.1.3 Constructing the initial fuzzy neurules
To construct initial neurules, first we need to know or determine the input, intermediate
and output variables. Then, we need dependency information. Dependency information
indicates which intermediate variables (concepts) and output variables (concepts)
depend on. If dependency information is missing, then output variables depend only on
input variables, as indicated by the training data.

In constructing an initial fuzzy neurule, all the conditions including the input,
intermediate and the output variables that contribute in drawing a conclusion (which
includes an intermediate or an output variable) constitute the inputs of the initial fuzzy
neurule and the conclusion its output. So, a fuzzy neurule has as many conditions as the
possible input, intermediate and output variable-value pairs. Also, one has to produce
as many initial fuzzy neurules as the different intermediate and output variable-value
pairs specified. Each fuzzy neurule is a fuzzy Adaline neuron with inputs the fuzzified
values, weights the membership functions and additional weights with initial values of
‘1’.

4.1.4 Training the initial neurules
From the initial training data, we extract as many (sub)sets as the initial fuzzy neurules.
Each such set, called a training set, contains training examples in the form [x1 x2 … xn
d], where xi, i= 1, …,n are their component values, which correspond to the n inputs of
the fuzzy neurule, and d is the desired output. Each training set is used to train the
corresponding initial neurule and calculate its additional weights that are already set as
‘1’. So, step 2 of the algorithm for each initial fuzzy neurule is analyzed as follows:
 2.1 From the initial training data, produce as many initial training sets (x1 x2

… xn d) as the number of the initial fuzzy neurules .

 2.2 We assign the (x1 x2 … xn d) to the region that has maximum degree
resulting one value with one membership function for each input
parameter

 2.3 For each set of desired input-output we obtain do the following:
 2.3.1 Obtain one fuzzy neurule i.e. If x1 is low and x2 high …. then d is

normal
 2.3.2 Assign an additional weight for each fuzzy neurule. The rule weight is

defined as CFi = µA(χ1)µB(χ2)…µC(d). This step is further performed to delete
redundant rules, and therefore obtain a concise fuzzy neurule base.

 2.3.3 Produce the corresponding fuzzy neurule that is like If x1 is A and x2 B ….
then d is C (CF)

If two or more generated fuzzy neurules have the same conditions and
consequents, then the rule that has maximum degree in the desired output is used. In
this way, assigning the additional weigth to each rule, the fuzzy rule base can be
adapted or updated by the relative weighting strategy: the more task related the rule
becomes, the more weight degree the rule gains. As a result, not only is the conflict
problem resolved, but also the number of rules is reduced significantly [2].

Suppose for example that we are given the following set of desired input -(x1,x2)
output (y) data pairs (x1,x2,y): (0.6, 0.2; 0.2), (0.4, 0.3; 0.4). In our system, input
variable fever used has a degree of 0.8 in low, a degree of 0.2 in low. Similarly, input
variable itching has degree of 0.6 in low and of 0.3 in medium. Secondly, assign x1 i ,
x2 i , and y I to a region that has maximum degree. Finally, obtain one rule from one
pair of desired input-output data, for example,

(x1 1 ,x2

1 ,y1) => [x1
1 (0.8 in low), x2 1 (0.2 in low),y 1 (0.6 in normal)],

• R1: if x1 is low and x2 is medium, then y is normal;

(x1
2 ,x2 2 ,y 2), => [x1(0.8 in low),x2 (0.6 in medium),y 2 (0.8 normal)],

• R2: if x1 is low and x2 is high, then y is medium;
Assign a degree to each rule. To resolve a possible conflict problem, i.e. rules

having the same antecedent but a different consequent, and to reduce the number of
rules, we assign a degree to each rule generated from data pairs and accept only the rule
from a conflict group that has a maximum degree. In other words, this step is
performed to delete redundant rules, and therefore obtain a concise fuzzy neurule base.
The following product strategy is used to assign a degree to each rule. The degree of
the rule de-noted by

Ri : if x1 is A and x2 is B, then y is C(wi),
The rule additional weight is defined as

wi = µA(xl)µB(x2)µc(y)
For example of our example
R1 has a degree of
W1 = µlowf(x1)µ medium (x2)µ normal (y) = 0.8 x 0.2 x 0.6 = 0.096,
and R2 has a degree of
W2 = µhalf(x1)µ high(x2)µ normal (y) = 0.8 x 0.6 x 0.8 = 0.384
Note, that if two or more generated fuzzy rules have the same preconditions and

consequents, then the rule that has maximum degree is used. In this way, assigning the
degree to each rule, the fuzzy rule base can be adapted or updated by the relative
weighting strategy: the more task related the rule becomes, the more weight degree the

rule gains. As a result, not only is the conflict problem resolved, but also the number of
rules is reduced significantly. After the structure-learning phase (if-then rules), the
whole network structure is established, and the network enters the second learning
phase to optimally adjust the parameters of the membership functions using the GA
algorithm to minimise the error function.

5. Inference through FUNEUS

A functional block diagram of the FUNEUS model consists of two phases of

learning processes: a) The first phase is the structure-learning (if-then rules) phase
using the knowledge acquisition module producing the fuzzy neurule base. b) The
second phase is the parameter-learning phase for tuning membership functions to
achieve a desired level of performance with the use of a Genetic Algorithm to tune
membership functions to fine-tune the parameters of the fuzzy membership functions.

In the connectionist structure, the input and output nodes represent the input states
and output decision signals, respectively, and in the hidden layers, there are nodes
functioning as quantification of membership functions (MFs) and if-then rules. As soon
as the initial input data set is given and put in the Working Memory (WM), the
resulting output fuzzy neurules are considered for evaluation. One of them is selected
for evaluation. Selection is based on textual order. A rule succeeds if the output of the
corresponding fuzzy adaline unit is computed to be ‘1’, after evaluation of its
conditions.

A condition evaluates to ‘true’, if it matches a fact in the WM, where there is a fact
with the same variable, predicate and value. A condition evaluates to ‘unknown’, if
there is a fact with the same variable, predicate and ‘unknown’ as its value. A condition
cannot be evaluated if there is no fact in the WM with the same variable. In this case,
either a question is made to the user to provide data for the variable, in case of an input
variable, or an intermediate fuzzy neurule in Fuzzy Neurule Base (FNRB) with a
conclusion containing that variable is examined, in case of an intermediate variable. A
condition with an input variable evaluates to ‘false’, if there is a fact in the WM with
the same variable, predicate and different value. A condition with an intermediate
variable evaluates to ‘false’ if additionally to the latter there is no unevaluated
intermediate fuzzy neurule in the FNRB that has a conclusion with the same variable.
Inference stops either when one or more output fuzzy neurules are fired (success) or
there is no further action (failure). In the training phase input membership functions
and desired output values of the training data-set are used in a text-form to fine tune the
parameters of the fuzzy sets with the offline use of the GA component.

6. Model Validation Using Testing Data Sets

6.1 Coronary Heart Disease Development (crisp and fuzzy data)

The experimental data set was taken from Takumi Ichimura and Katsumi Yoshida
[11] that prepared a medical database named Coronary Heart Disease DataBase
(CHD_DB), which makes it possible to assess the effectiveness of classification
methods in medical data. The CHD_DB is based on actual measurements of the
Framingham Heart Study - one of the most famous prospective studies of

cardiovascular disease. It includes more than 10,000 records related to the development
of coronary heart disease (CHD). We have proved it enough valid by statistical
analyses.

We used FUNEUS to develop a diagnostic system that outputs whether each
record is a non-CHD case or a CHD case.

Data in coronary heart diseases database are divided into two classes: non-oronary
heart disease cases (non-CHD) and coronary heart disease cases (CHD). Each patient’s
disorder is diagnosed according to the results of eight test items. The eight items tested
are Cholesterol (TC), Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP),
Drinking (ALCOHOL) that are used as inputs with fuzzy values, Left Ventricular
Hypertrophy (LVH), Origin (ORIGIN), Education (EDUCATE), Smoking
(TABACCO), and that used as inputs with non-fuzzy value. The fuzzy inference
system was created using the FUNEUS. We used triangular membership functions and
each input variable were assigned three MFs. Ten fuzzy rules were created using the
methodology mentioned in Section 3 (Rule format: IF (…) THEN CHD) :
Rule 1 : (SBP high)
…
Rule 3 : (TC high)
Rule 4 : (SBP medium) AND (DBP > high) AND (LVH = 0)AND (EDUCATE < 2) AND (TABACCO > 0)
AND (TABACCO < 3)
…
Rule 6 : (TC medium) AND (DBP high) AND (ORIGIN = 1)
AND (TABACCO > 0) AND (ALCOHOL low)
Rule 7 : (TC medium) AND (SBP high) AND (DBP medium)
AND (EDUCATE < 1) AND (TABACCO < 2)
…
Rule 10 : (TC high) AND (SBP high) AND (DBP > high) AND (LVH = 0) AND (TABACCO > 0)AND
(TABACCO < 3) AND (ALCOHOL medium)

We also explored the fine-tuning of membership functions using DE algorithm.

We started with a population size 10, tournament selection strategy, mutation rate 0.01
and implemented a one point crossover operator. After a trial and error approach by
increasing the population size and the number of iterations (generations), we finalized
the population size and number of iterations as 50. Figure 3 demonstrates the effect of
parameter tuning of membership functions (before and after evolutionary learning) for
the input variable ALCOHOL used.

6.2 Evaluation results
We used Train_Z, set which is consisted of 400 CHD cases, and 3600 non-CHD

cases. The judgment accuracy for 4000 training data was as follows: results were
correct for 310 cases of 400 CHD cases, and were false for 2683 of 3600 non-CHD
cases. Therefore, the recognition rate to the set of training data was 75.0%, comparable
with machine learning method used in [15].

Figure 3. The MFs of input variable ALCOHOL used before and after GA

learning

7. Discussion and Related Work

A number of NF systems have used for various real life problems. Among others, three
neuro-fuzzy systems that use hybrid learning for rules generation and parameter tuning
like FUNEUS presented in this paper have already been described [8]. The first one is
called NEFCON (NEuro-Fuzzy CONtroller) and used for control applications. The
next one is NEFCLASS (NEuro-Fuzzy CLASSifier) and used for classification
problems and pattern recognition [5]. The third one is NEFPROX (Neuro-Fuzzy
function for approximation) and used for function approximation. The three systems
are based on generic fuzzy perceptron which is a kind of FNN. Each of these systems
can learn a rule-base and then tune the parameters for the membership functions.
Perceptron is used in order to provide a framework for learning algorithms to be
interpreted as a system of linguistic rules and to be able to use prior knowledge in the
form of fuzzy IF-THEN rules. Additionally fuzzy weights are associated with linguistic
terms. The fuzzy perseptron is composed from an input layer, in a hidden layer and an
output layer. Connections between them are weighted with fuzzy sets instead real
numbers. In NEFCON inputs are state variables and the only one output neuron outputs
control action applied to a technical system. In NEFCLASS the rule-base approximates
a function for a classification problem and maps an input pattern to proper class using
no membership functions in the rule’s consequents [8]. There are also examples of NF
systems that do not employ any algorithms for rule generating, so the rule base must be
known in advance. They can only adjust parameters of the antecedent and consequent
fuzzy sets. The most popular system of this kind is ANFIS (Adaptive-Network-based
Fuzzy Inference System) that is of the first hybrid NF systems for function
approximation. The architecture is five-layer feed-forward implementing Tagaki-
Sugeno type of rules [11]. According to Abraham [3] Sugeno type systems are high
performers but often require complicated learning procedures and computational
expensive. An optional design of a NF system can only be achieved by the adaptive
evolution of membership functions, rule base and learning rules. For each architecture
evolution of membership functions proceeds at a faster time scale in an environment
decided by the problem, the architecture and the inference system. Thus, global search
of fuzzy rules and membership functions provide the fastest possible time scale [3].
The main problem here is that the resulting rules are usually not accepted form the
expert knowledge because they are mechanically derived and not related with real
world. So it is desirable to tune a set of predefined rules rather to produce a set from

data [15]. In this paper we present FUNEUS which is a NF system based on fuzzy
Adaline neurons and uses Genetic Algorithms for optimization of membership
functions. Taking account the previous approaches and that it remains difficult to
compare NF systems conceptually and evaluate their performance FUNEUS is an
attempt to the direction of integrating the best components of such approaches after our
experience with a well-defined hybrid model so-called HYMES. Experimental results
proved acceptable performance of the NF need to be evaluated in more domains as
Medical Diagnosis [17] and Intelligent Educational Systems [18]. Further work will
provide additionally experimental results compared with other hybrid approaches.

References

[1] Bonissone PP, Chen YT, Goebel T, and Khedkar PS.: Hybrid Soft Computing Systems: Industrial
and Commercial Applications, Proceedings of the IEEE, 87(9), 1641-1667, (1999).

[2] Hatzilygeroudis I., Prentzas, J.: HYMES: A HYbrid Modular Expert System with Efficient
Inference and Explanation. Proceedings of the 8th Panhellenic Conference on Informatics,
Nicosia, Cyprus, Vol.1 (2001) 422-431

[3] Abraham A. and Nath B.: Hybrid Intelligent Systems Design-A Review of a Decade of Research,
[4] Pedrycz W.: Heterogeneous Fuzzy Logic Networks: Fundamentals and Development Studies

IEEE Transactions on Neural Networks, vol. 15, 6:1466- 81 (2004)
[5] Kasabov N.: Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering, MIT

Press (1996)
[6] Konar A.: Computational Intelligence, Springer-Verlag (2005).
[7] Gallant S.I., Neural Network Learning and Expert Systems, MIT Press (1993).
[8] Shavlik J.: Combining Symbolic and Neural Learning, Machine Learning, 14, 321-331 (1994)
[9] Rutkowska D.: Neuro-Fuzzy Architecture and Hybrid Learning, Physica-Verlag Press (2002)
[10] Yamakawa T. Pattern recognition hardware system employing fuzzy neuron, In Proceedings of

the International Conf of Fuzzy Logic and Neural Networks , Lizuka Japan, July 1990, 943-948.
[11] Pal SK, Mitra S.: Neuro-Fuzzy Pattern Recognition, John Wiley & Sons, NY (1999).
[12] Jang J.: ANFIS: Adaptive-Network-based-Fuzzy-Inference System, IEEE Trans on Systems, Man

and Cybernetics, 23:665-685.
[13] Suka M , Ichimura T, and Yoshida K.: Development of Coronary Heart Disease Database, KES

2004, LNAI 3214:1081–1088, 2004.
[14] Storn, R., "System Design by Constraint Adaptation and Differential Evolution", IEEE Trans. on

Evolutionary Computation, 1999, Vol. 3, No. 1, pp. 22 - 34.
[15] Hara A., Ichimura T.: Extraction of Rules from Coronary Heart Disease Database Using

Automatically Defined Groups, M.Gh. Negoita et al. (Eds.): KES 2004, LNAI 3214:1089–1096,
(2004).

[16] Wang L. X. & Mendel J. M., Generating Fuzzy Rules by Learning from Examples,
IEEETranscation on System, Man and Cybernetics, Vol. 22, Issue 6, pp. 1414-1427, 1992.

[17] Georgios D. Dounias and Derek A. Linkens (Eds.), (2001), Adaptive Systems and Hybrid
Computational Intelligence in Medicine, Special Session Proceedings of the EUNITE 2001
Symposium, Tenerife, Spain, December 13-14, 2001, A Publication of the University of the
Aegean, ISBN 960-7475-19-4

[18] I. Hatzilygeroudis, C. Giannoulis and C. Koutsojannis, Combining Expert Systems and Adaptive
Hypermedia Technologies in a Web Based Educational System, ICALT 2005 (Kaohsiung,Taiwan,
July 5-8,2005).

