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Abstract. Neurules are a type of hybrid rules combining a 
symbolic and a connectionist representation. A neurule base 
consists of a number of autonomous adaline units (neurules), in 
contrast to existing neuro-symbolic knowledge bases. A neurule 
base is constructed from training examples. To overcome the 
inability of the adaline unit to classify non-separable training 
examples, the notion of ‘closeness’ between training examples 
has been used to split the initial training set into subsets that can 
be successfully trained. In this paper, we investigate previously 
unexplored aspects regarding the construction of neurules from 
training examples. First, we compare different splitting policies, 
i.e. policies using different criteria for splitting the training set. 
We also introduce two alternative approaches to splitting not 
solely relying on closeness and compare them with our initial 
approach, which is solely based on closeness. The comparison 
demonstrates the effectiveness of the notion of ‘closeness’ in 
splitting the initial non-separable training set. Finally, we 
evaluate the generalization capability of neurules. 

1 INTRODUCTION 
Recently there has been extensive research activity at 
combining (or integrating) the symbolic and the connectionist 
approaches for problem solving in intelligent systems [3, 4, 5, 
12, 13, 14, 15, 19, 21]. Especially, there are a number of efforts 
at combining symbolic rules and neural networks for 
knowledge representation [6, 20]. What they do is a kind of 
mapping from symbolic rules to a neural network. Also, 
connectionist expert systems are a type of integrated systems 
that represent relationships between concepts, considered as 
nodes of a neural network [7, 8]. The strong point of those 
approaches is that knowledge elicitation from experts is 
reduced to a minimum. A weak point of them is that the 
resulted systems lack the naturalness and modularity of 
symbolic rules. This is mainly due to the fact that those 
approaches give pre-eminence to connectionism. So, 
explanations are often provided in the form of if-then rules by 
rule extraction methods [1, 2]. 

Neurules constitute a hybrid rule-based representation 
scheme achieving a uniform and tight integration of a symbolic 
component (production rules) and a connectionist one (the 
adaline unit) [8, 9]. In contrast to other integrated approaches, 

neurules give pre-eminence to the symbolic component. Each 
neurule is considered as an adaline unit. Thus, neurules give a 
more natural way of representing knowledge since the 
constructed knowledge base retains the modularity and (to 
some degree) the naturalness of symbolic rules. Also, the 
corresponding inference mechanism, which is a tightly 
integrated process, results in more efficient inference than those 
of symbolic rules, and explanations, in the form of if-then rules, 
can be provided [11]. Mechanisms for efficiently updating a 
neurule base, given changes to its source knowledge, have also 
been developed [17, 18]. 

One way of constructing neurules is from empirical data (i.e., 
training examples) [10]. A difficult point in this approach is the 
inherent inability of the adaline unit to classify non-separable 
training examples. To overcome this difficulty of the adaline 
unit, we introduced the notion of ‘closeness’, as far as the 
training examples are concerned. That is, when the LMS 
algorithm fails to produce weights that classify all the 
examples, due to non-separability, we split the initial training 
set of the involved neurule in two subsets, which contain 
‘close’ examples, and train a copy of the neurule for each 
subset. Failure of training any copy leads to further splitting as 
far as success is achieved. 

In this paper, we investigate previously unexplored aspects 
regarding the construction of neurules from training examples. 
First, we compare different splitting policies, i.e. policies using 
different criteria for splitting the training set. Second, we 
introduce alternative approaches to constructing neurules from 
training examples, not solely relying on closeness to perform 
splitting. We also compare these alternative approaches with 
our initial approach, which is solely based on closeness. 
Finally, we present experimental results evaluating the 
generalization capability of neurules and comparing it with the 
generalization capability of a back-propagation neural network 
and a single adaline unit.  

The structure of the paper is as follows. Section 2 presents 
neurules, the mechanism for their construction from training 
examples and different splitting policies (based on closeness). 
Section 3 introduces alternative approaches to splitting (not 
solely relying on closeness). Section 4 presents experimental 
results and finally Section 5 concludes the paper. 



2 NEURULES 

2.1 Syntax and Semantics 
Neurules (: neural rules) are a kind of hybrid rules. Each 
neurule (Fig. 1a) is considered as an adaline unit (Fig.1b). The 
inputs Ci (i=1,...,n) of the unit are the conditions of the rule. 
Each condition Ci is assigned a number sfi, called a significance 
factor, corresponding to the weight of the corresponding input 
of the adaline unit. Moreover, each rule itself is assigned a 
number sf0, called the bias factor, corresponding to the bias of 
the unit.  

Each input takes a value from the following set of discrete 
values: [1 (true), -1 (false), 0 (unknown)]. The output D, which 
represents the conclusion of the rule, is calculated via the 
formulas: 

D = f(a) ,     ∑
n

i=
ii Csf + = sf     

1
0a (1) 

 
where a is the activation value and f(x) the activation function, 
which is a threshold function: 

                                                1       if a ≥ 0 
       f(a) =  
                                               -1      otherwise 

Hence, the output can take one of two values, ‘-1’ and ‘1’, 
representing failure and success of the rule respectively. 

predicate. The symbolic predicates are {is, isnot}, whereas the 
numeric predicates are {<,  >, =}. <r-predicate> can only be a 
symbolic predicate. <value> denotes a value. It can be a symbol 
or a number. <bias-factor> and <significance-factor> are (real) 
numbers. The significance factor of a condition represents the 
significance (weight) of the condition in drawing the 
conclusion.  

2.2 Constructing Neurules from Training Examples 
Each neurule is individually trained via a training set, which 
contains training examples in the form [v1 v2 … vn d], where vi, 
i= 1, …,n are their component values, corresponding to the n 
inputs of the neurule, and d is the desired output (‘1’ for 
success, ‘-1’ for failure). We call success examples the 
examples with d=1 and failure examples the ones with d=-1. 
The learning algorithm employed is the standard least mean 
square (LMS) algorithm. 

However, there are cases where the LMS algorithm fails to 
specify the right significance factors for a number of neurules. 
That is, the adaline unit of a rule does not correctly classify 
some of the training examples. This means that the training 
examples correspond to a non-separable (boolean) function. To 
overcome this problem, the initial training set is split into two 
subsets in a way that each subset contains success examples, 
which are ‘close’ to each other in some degree. The closeness 
between two examples is defined as the number of common 
component values. For example, the closeness of [1 0 1 1 1] 
and [1 1 0 1 1] is ‘2’. Also, we define as least closeness pair 
(LCP), a pair of success examples with the least closeness in a 
training set. There may be more than one LCP in a training set. 

Initially, a LCP in the training set is found and two subsets 
are created each containing as its initial element one of the 
success examples of that pair, called its pivot. Each of the 
remaining success examples is distributed between the two 
subsets based on its closeness to the pivots. More specifically, 
each subset contains the success examples, which are closer to 
its pivot. Then, the failure examples of the initial set are added 
to both subsets, to avoid neurule misfiring. After that, two 
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(sf0) if C1 (sf1), 

           C2   (sf2), 

               … 

            Cn (sfn) 

        then D 

 

       (a)              (b) 
Figure 1. (a) Form of a neurule (b) corresponding adaline unit 

The general syntax of a neurule (in a BNF notation, where 
‘{}’ denotes zero, one or more occurrences and ‘<>’ denotes 
non-terminal symbols) is: 
<rule>::= (<bias-factor>) if <conditions> then <conclusions> 
<conditions>::= <condition> {, <condition>} 
<conclusions>::= <conclusion> {, <conclusion>} 
<condition>::= <variable> <l-predicate> <value> 

          (<significance-factor>) 
<conclusion>::= <variable> <r-predicate> <value> . 

In the above definition, <variable> denotes a variable, that is 
a symbol representing a concept in the domain, e.g., ‘sex’, 
‘pain’ etc, in a medical domain. A variable in a condition can 
be either an input variable or an intermediate variable, whereas 
a variable in a conclusion can be either an intermediate or an 
output variable.  <l-predicate> denotes a symbolic or a numeric 

copies of the initial neurule, one for each subset, are trained 
employing the LMS learning algorithm. If the factors of a copy 
misclassify some of its examples, the corresponding subset is 
further split into two other subsets, based on one of its LCPs. 
This continues, until all examples are classified. This means 
that from an initial neurule more than one final neurule may be 
produced, called sibling neurules (for details see [10]). 

To illustrate how splitting is performed, we use as an 
example the training set presented in Table 1. As it is clear, 
the majority of the examples in the training set are failure 
examples, whereas success examples, which are shown in 
bold, are a minority. The training set has been extracted 
from empirical data concerning five input (domain) 
variables and an output variable (disease) that depends on 
the five domain variables. Given that each input variable can 
take more than one discrete value, each initial neurule has 
thirteen conditions (C1-C13). D corresponds to the 
conclusion. Actually Table 1, for simplicity reasons, shows 
only a subset of the failure examples. 

C1 C2 Cn



 
 

Table 1. An example training set 
C

1 
C

2 
C

3 
C

4 
C

5 
C

6 
C

7 
C

8 
C

9 
C

10 
C

11 
C

12 
C

13 
D 

-1 -1 1 -1 -1 1 1 1 -1 1 -1 -1 -1 -1 
-1 -1 1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 
-1 -1 1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 1 1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 
-1 -1 1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 
-1 -1 1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 
-1 -1 1 1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 
-1 -1 1 1 -1 1 -1 -1 -1 1 -1 1 -1 -1 
-1 -1 1 1 -1 1 -1 -1 1 -1 -1 1 -1 -1 
-1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 -1 1 
-1 1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 
-1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 
-1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 -1 
-1 1 1 -1 -1 1 -1 1 -1 1 -1 -1 -1 1 
1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 
1 1 1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 
1 1 1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 
1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 

 
 
For presentation reasons, names (P1-P5) are assigned to 

the five success examples/patterns (of Table 1), as presented 
in Table 2. Also, let F be the set of failure examples in the 
training set. 

Table 2. Success examples 
symbol description 

P1 [-1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1] 
P2 [-1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1] 
P3 [-1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1] 
P4 [-1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1] 
P5 [1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1] 

 

 
Figure 2. Splittings of the training set of Table 1 

 
Due to inseparability, the initial training set {P1, P2, P3, 

P4, P5} ∪ F is split in two subsets: {P1, P3, P4} ∪ F and 
{P2, P5} ∪ F with as least closeness pair (P1, P5). Subset 
{P1, P3, P4} ∪ F is subsequently split into subsets {P3} ∪ F 
and {P1, P4} ∪ F. Subset {P3} ∪ F produces a neurule (see 

Figure 3). Subset {P1, P4} ∪ F produces another neurule. 
Similarly, from subset {P2, P5} ∪ F two other neurules are 
produced (corresponding to its two leaves). The performed 
splittings are illustrated in Figure 2, as a tree. 

In creating the training subsets, some requirements were 
implicitly satisfied. Each training subset contains: (a) all the 
failure examples of the initial training set to protect from 
misactivations and (b) at least one success example to 
guarantee the activation of the corresponding neurule. 
Furthermore, the two subsets created by splitting a (sub)set do 
not have common success examples to avoid having different 
neurules activated by the same success example(s). In the 
following sections, the approach to splitting based on closeness 
will be called CLOSENESS-SPLIT. 

A point of interest in training a neurule with a non-separable 
training set is how to choose a least closeness pair (LCP), in the 
process of producing the two subsets of the initial training set. 
Not all LCPs result in the same number of final neurules. So, 
we are looking for the LCP that finally produces the minimum 
number of sibling neurules. We tried three heuristic methods 
for that: the random choice, the best distribution and the mean 
closeness method. The random choice method (RC) chooses 
randomly one of the LCPs and is the simplest and least 
expensive of the three methods. The best distribution method 
(BD) suggests choosing the LCP that assures distribution of the 
two elements of all the other (or most of the other) LCPs in 
different sets. So, examples with least closeness will be 
included in different sets, which may assure separability. The 
mean closeness method (MC) initially computes the mean 
closeness of each of the two subsets to be created from each 
LCP. Then, it calculates the mean closeness of each LCP, 



which is the mean closeness of the two subsets, and chooses the 
LCP with the greatest mean closeness. It is obvious that MC is 
(computationally) the most expensive method. 
 

NR1 
(-13.5) if venous-conc is slight (12.4), 
                blood-conc is moderate (11.6), 
                art-conc is moderate (8.8), 
                scan-conc is normal (8.4), 
                cap-conc is moderate (8.4), 
                blood-conc is slight (8.3), 
                venous-conc is moderate (8.2), 
                venous-conc is normal (8.0), 
                arterial-conc is slight (-5.7), 
                cap-conc is slight (4.5), 
                blood-conc is normal (4.4), 
                blood-conc is high (1.6), 
                venous-conc is high (1.2) 
            then disease is inflammation 

 
Figure 3. One of the produced neurules 

3  ALTERNATIVE APPROACHES 
In this section, we present two alternative approaches to 
splitting a non-separable training set not solely relying on 
closeness. The two alternative approaches will be called 
ALTERN-SPLIT1 and ALTERN-SPLIT2 respectively. Both of 
these approaches satisfy the implicit requirements mentioned in 
the previous section. The idea behind both approaches is 
simple. More specifically, they focus on the examples which 
are misclassified by the weights calculated by LMS and try to 
split the training set into two subsets: one containing the 
correctly classified success examples (along with all failure 
examples) and one containing the misclassified success 
examples (along with all failure examples). This process can be 
followed only if some (not all) success examples (and possibly 
failure examples) are misclassified. If all success examples are 
misclassified or if only failure examples are misclassified, there 
is no alternative but to split based on closeness. Therefore, in 
this process one should distinguish the following cases: (a) all 
of the success examples are misclassified, (b) only failure 
examples are misclassified, (c) only some of the success 
examples and none of the failure ones are misclassified, (d) 
failure examples and some of the success examples are 
misclassified. In cases (a) and (b) splitting is based on 
closeness. The two approaches differ only in the way of 
handling case (d).  

More formally, approach ALTERN-SPLIT1 is as follows: 
1. If all success examples are misclassified by the calculated 

weights, split the training set based on closeness.  
2. Else, if only failure examples are misclassified, split the 

training set based on closeness. 
3. Else, if only some of the success examples (and none of the 

failure examples) are misclassified, split the training set in 
two subsets: one containing the correctly classified success 

examples (along with all failure examples) and one 
containing the misclassified success examples (along with all 
failure examples). 

4. Else, if failure examples and some of the success examples 
are misclassified, split the training set in two subsets: one 
containing the correctly classified success examples (along 
with all failure examples) and one containing the 
misclassified success examples (along with all failure 
examples). 
Approach ALTERN-SPLIT2 does the same as ALTERN-

SPLIT1 in steps 1, 2, 3 and handles step 4 based on closeness. 
It can be easily seen that ALTERN-SPLIT2 lies between 
CLOSENESS-SPLIT and ALTERN-SPLIT1.  

4  EXPERIMENTAL RESULTS 
In this section, we present various experimental results using 
datasets from the UCI Machine Learning Repository [15]. The 
experimental results involve the following aspects: (a) 
evaluation of the three different splitting policies based on 
closeness (i.e., RC, BD, MC), (b) comparison of the three 
approaches to splitting, CLOSENESS-SPLIT, ALTERN-
SPLIT1 and ALTERN-SPLIT2 and (c) evaluation of the 
generalization capability of neurules and comparison with the 
generalization capabilities of the back propagation neural 
networks and the adaline unit.  

 
Table 3. Number of neurules produced by the RC, MC and BD policies 

Dataset Condi-
tions 

Conclu-
sions RC MC BD 

Monks1_train  
(124 patterns) 

17 2 17 17 13 

Monks2_train 
(169 patterns) 

17 2 46 47 38 

Monks3_train 
(122 patterns) 

17 2 14 11 12 

Tic-Tac-Toe 
(958 patterns) 

27 2 26 26 24 

Car 
(1728 patterns) 

21 4 151 163 153 

Nursery 
(12960 patterns) 

27 5 830 839 823 

 
Table 3 depicts experimental results for CLOSENESS-

SPLIT comparing RC, MC and BD. Comparison is based on 
the number of neurules produced from each splitting method, 
shown in columns ‘RC’, ‘MC’ and ‘BD’. Column ‘Conditions’ 
denotes the number of conditions for each sibling neurule and 
column ‘Conclusions’ the number of different (final) 
conclusions. For the ‘monks’ datasets we used the training sets 
provided in the UCI Repository. Based on the results of Table 
3, none of the three methods is clearly better than the others for 
all datasets. Further on, there is no great difference in the 
number of neurules produced by the three methods. BD 
performs better in most of the cases. RC, the simplest of the 



three methods, performs quite well even in the large datasets 
compared to the other two more complex methods. On the other 
hand, MC, which is computationally the most expensive 
method, does not perform quite well compared to the other 
methods to justify its use. So, BD or RC can be considered as 
better alternatives as far as the number of produced neurules is 
concerned. The number of produced neurules is the basic 
criterion of the comparisons, because it plays a crucial role in 
inference efficiency and neurule-base size. 

Table 4 presents experimental results regarding ALTERN-
SPLIT1 and ALTERN-SPLIT2. RC, MC and BD play a role 
for subsets in which splitting based on closeness is used. 

Table 5 presents summary results comparing the three 
approaches to splitting, CLOSENESS-SPLIT, ALTERN-
SPLIT1 and ALTERN-SPLIT2. Comparison is based on the 
minimum number of neurules produced from each method. In 
parentheses, the name of the splitting policy (i.e., RC, BD, MC) 
used, when producing the minimum number of neurules is 
shown. CLOSENESS-SPLIT is generally better than the other 
two methods. This demonstrates the effectiveness of the notion 
of ‘closeness’. This last conclusion is further intensified by the 
fact that ALTERN-SPLIT2 that lies between ALTERN-SPLIT1 
and CLOSENESS-SPLIT generally performs better than 
ALTERN-SPLIT1. The results also show that it may be worth 
to employ ALTERN-SPLIT1 and ALTERN-SPLIT2. A further 
result is that BD generally performs better than RC and MC. 

 
Table 4. Number of neurules produced by ALTERN-SPLIT1 and 

ALTERN-SPLIT2 
ALTERN-SPLIT1 ALTERN-SPLIT2 

Dataset 
RC MC BD RC MC BD 

Monks1_train  22 24 24 19 16 13 
Monks2_train 34 32 33 43 49 39 

Monks3_train 15 15 15 14 11 13 
Tic-Tac-Toe 44 41 40 43 41 38 

Car 189 171 169 152 161 154 

Nursery 1330 1382 1378 837 842 821 

 
Table 5. Number of neurules produced by CLOSENESS-SPLIT, 

ALTERN-SPLIT1 and ALTERN-SPLIT2 

Dataset CLOSENESS-
SPLIT 

ALTERN-
SPLIT1 

ALTERN-
SPLIT2 

Monks1_train  13 (BD) 22 (RC) 13 (BD) 
Monks2_train 38 (BD) 32 (MC) 39 (BD) 
Monks3_train 11 (MC) 15 (RC, MC, BD) 11 (MC) 
Tic-Tac-Toe 24 (BD) 40 (BD) 38 (BD) 

Car 151 (RC) 169 (BD) 152 (RC) 
Nursery 823 (BD) 1330 (RC) 821 (BD) 

 
Tables 6 and 7 present results regarding the classification 

accuracy (generalization) of neurules on unseen test examples.  
Table 6 compares the classification accuracy of neurules 
produced from the three splitting policies based on closeness. 
Table 7 compares the classification accuracy of neurules (i.e., 
the best result of Table 6) with the ones of the adaline unit and 
back-propagation neural networks. The results for each dataset 
(except for the three monks datasets) were produced by using 
75% of the examples as training set and 25% of the examples as 

testing set in four different runs. Needless to say that the 
training examples in the test sets were not included in the 
training sets. Different and disjoint test sets were used in each 
run, so that the union of the four test sets formed the whole 
dataset. The classification accuracy was computed as the mean 
value of the accuracies obtained from the four runs. For 
‘monks1’ and ‘monks2’ datasets this procedure for creating 
training and test sets was applied to the corresponding test sets 
of 432 training examples available in the UCI repository. For 
the ‘monks3’ dataset, the training and test set available in the 
UCI repository were used since the training set is reported to 
contain noise. It should be mentioned that we were not able to 
construct a back-propagation neural network for the ‘Nursery’ 
dataset with competitive generalization capability. 

For the training of back-propagation neural networks, the 
standard back-propagation algorithm was employed using a 
momentum in adjusting the weights and one layer of hidden 
nodes. The values of these three back-propagation parameters 
along with the average error threshold were tuned separately for 
the training sets of each dataset after a number of experiments 
(based on error-and-trial). Training stopped when either the 
number of training epochs reached an upper threshold or the 
average squared error became less than or equal to the average 
error threshold. Furthermore, no cross-validation was used 
when training the adaline unit, the neurules or the back-
propagation neural network (perhaps with cross-validation the 
results of Table 7 for all approaches would have been slightly 
better). Also, if the activations of multiple output nodes 
exceeded 0.5 (when a test example was given as input), then the 
example took the category of the most active output node (i.e., 
the one with the greatest activation) [20].  
 

Table 6. Generalization of neurules produced from RC, MC, BD policies 
Dataset RC MC BD 

Monks1 100% 100% 100% 

Monks2 96.30% 96.99% 97.92% 

Monks3 92.36% 93.52% 96.06% 

Tic-Tac-Toe 98.85% 97.50% 98.12% 

Car 94.44% 94.56% 94.50% 

Nursery 99.63% 99.53% 99.52% 

 
 Table 7. Generalization of adaline unit, neurules and back-propagation 

neural network  
Dataset Adaline Unit Neurules BPNN 
Monks1 67.82% 100% 100% 
Monks2 43.75% 97.92% 100% 
Monks3 92.13% 96.06% 97.22% 

Tic-Tac-Toe 61.90% 98.85% 98.23% 

Car 78.93% 94.56% 95.72% 

Nursery 82.26% 99.63%  

 
The results in Tables 6 and 7 show that neurules generalize 

quite well. Table 6 shows that none of the three splitting 
policies performs better than the others in all datasets. 
Comparing the results of Table 5 and Table 6, it can be said that 
it is not unlikely that a splitting policy may generalize better 



than the other policies although it produced a greater number of 
neurules. Table 7 shows that neurules outperform the adaline 
unit and are worse than back-propagation neural networks. 
These results are very promising. It was expected that the 
generalization capability of neurules would be somewhere 
between the adaline unit and the back-propagation neural 
network. This is due to the nature of the three approaches: the 
adaline unit is a single unit for performing classification, a 
neurule base consists of a number of autonomous adaline units 
(neurules) and a back-propagation neural network is a multi-
layer network containing hidden nodes useful for the 
computation of non-separable functions. 

A parameter not shown in Table 7 involves the total effort in 
constructing the corresponding knowledge base. The 
construction of a neurule base is easier than the construction of 
a back-propagation neural network. When constructing 
neurules, one should only try out the different splitting 
approaches. So, construction of neurules is straightforward. On 
the other hand, in the case of a back-propagation neural 
network, one should simultaneously adjust three different 
parameters (based on error-and-trial): the number of hidden 
nodes (assuming one hidden layer), the learning rate and the 
momentum. The number of hidden nodes is an integer, whereas 
the learning rate and the momentum are real numbers lying 
between 0.0 and 1.0. Simultaneously adjusting those three 
parameters can be a non-trivial and time-consuming task. 
However, the adjustment of those parameters plays an 
important role in the classification accuracy of the neural 
network regarding the training and test sets.   

It should be also mentioned that when we developed a 
method for producing neurules from training examples [10], we 
did not have generalization as our primary intention. Our effort 
was to develop an alternative method to the one producing 
neurules through conversion from existing symbolic rule bases 
[9]. In this way, the knowledge acquisition process is facilitated 
since neurules can be constructed from two alternative sources, 
existing symbolic rule bases and training examples. However, 
according to the results of this paper, regarding generalization 
capability of neurules, neurules could be a choice in 
applications with available training examples and in which 
naturalness, modularity of the knowledge base and provision of 
interactive inference and explanation mechanisms are desirable 
factors besides generalization. Obviously in applications in 
which generalization is the only concern, one should choose 
back-propagation neural networks.  

5  CONCLUSIONS 
In this paper, we investigate previously unexplored aspects 
regarding the construction of neurules from training examples. 
Results validate our initial choice, demonstrating the 
effectiveness of solely using the notion of ‘closeness’ to handle 
non-separable training sets. Alternative splitting approaches 
performed worse. Furthermore, experimental results show that 
neurules generalize quite well even compared to back-
propagation neural networks. Our future research will involve 
investigation of possible improvements to the construction and 
generalization capability of neurules.  
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