
Construction of Neurules from Training Examples: A
Thorough Investigation

Jim Prentzas1 and Ioannis Hatzilygeroudis,2

1 Technological Educational Institute of Lamia, Department of Informatics
and Computer Technology, 35100 Lamia, Greece, email: dprentzas@teilam.gr.
2 University of Patras, Dept of Computer Engineering & Informatics, 26500
Patras, Greece, email: ihatz@ceid.upatras.gr.

Abstract. Neurules are a type of hybrid rules combining a
symbolic and a connectionist representation. A neurule base
consists of a number of autonomous adaline units (neurules), in
contrast to existing neuro-symbolic knowledge bases. A neurule
base is constructed from training examples. To overcome the
inability of the adaline unit to classify non-separable training
examples, the notion of ‘closeness’ between training examples
has been used to split the initial training set into subsets that can
be successfully trained. In this paper, we investigate previously
unexplored aspects regarding the construction of neurules from
training examples. First, we compare different splitting policies,
i.e. policies using different criteria for splitting the training set.
We also introduce two alternative approaches to splitting not
solely relying on closeness and compare them with our initial
approach, which is solely based on closeness. The comparison
demonstrates the effectiveness of the notion of ‘closeness’ in
splitting the initial non-separable training set. Finally, we
evaluate the generalization capability of neurules.

1 INTRODUCTION
Recently there has been extensive research activity at
combining (or integrating) the symbolic and the connectionist
approaches for problem solving in intelligent systems [3, 4, 5,
12, 13, 14, 15, 19, 21]. Especially, there are a number of efforts
at combining symbolic rules and neural networks for
knowledge representation [6, 20]. What they do is a kind of
mapping from symbolic rules to a neural network. Also,
connectionist expert systems are a type of integrated systems
that represent relationships between concepts, considered as
nodes of a neural network [7, 8]. The strong point of those
approaches is that knowledge elicitation from experts is
reduced to a minimum. A weak point of them is that the
resulted systems lack the naturalness and modularity of
symbolic rules. This is mainly due to the fact that those
approaches give pre-eminence to connectionism. So,
explanations are often provided in the form of if-then rules by
rule extraction methods [1, 2].

Neurules constitute a hybrid rule-based representation
scheme achieving a uniform and tight integration of a symbolic
component (production rules) and a connectionist one (the
adaline unit) [8, 9]. In contrast to other integrated approaches,

neurules give pre-eminence to the symbolic component. Each
neurule is considered as an adaline unit. Thus, neurules give a
more natural way of representing knowledge since the
constructed knowledge base retains the modularity and (to
some degree) the naturalness of symbolic rules. Also, the
corresponding inference mechanism, which is a tightly
integrated process, results in more efficient inference than those
of symbolic rules, and explanations, in the form of if-then rules,
can be provided [11]. Mechanisms for efficiently updating a
neurule base, given changes to its source knowledge, have also
been developed [17, 18].

One way of constructing neurules is from empirical data (i.e.,
training examples) [10]. A difficult point in this approach is the
inherent inability of the adaline unit to classify non-separable
training examples. To overcome this difficulty of the adaline
unit, we introduced the notion of ‘closeness’, as far as the
training examples are concerned. That is, when the LMS
algorithm fails to produce weights that classify all the
examples, due to non-separability, we split the initial training
set of the involved neurule in two subsets, which contain
‘close’ examples, and train a copy of the neurule for each
subset. Failure of training any copy leads to further splitting as
far as success is achieved.

In this paper, we investigate previously unexplored aspects
regarding the construction of neurules from training examples.
First, we compare different splitting policies, i.e. policies using
different criteria for splitting the training set. Second, we
introduce alternative approaches to constructing neurules from
training examples, not solely relying on closeness to perform
splitting. We also compare these alternative approaches with
our initial approach, which is solely based on closeness.
Finally, we present experimental results evaluating the
generalization capability of neurules and comparing it with the
generalization capability of a back-propagation neural network
and a single adaline unit.

The structure of the paper is as follows. Section 2 presents
neurules, the mechanism for their construction from training
examples and different splitting policies (based on closeness).
Section 3 introduces alternative approaches to splitting (not
solely relying on closeness). Section 4 presents experimental
results and finally Section 5 concludes the paper.

2 NEURULES

2.1 Syntax and Semantics
Neurules (: neural rules) are a kind of hybrid rules. Each
neurule (Fig. 1a) is considered as an adaline unit (Fig.1b). The
inputs Ci (i=1,...,n) of the unit are the conditions of the rule.
Each condition Ci is assigned a number sfi, called a significance
factor, corresponding to the weight of the corresponding input
of the adaline unit. Moreover, each rule itself is assigned a
number sf0, called the bias factor, corresponding to the bias of
the unit.

Each input takes a value from the following set of discrete
values: [1 (true), -1 (false), 0 (unknown)]. The output D, which
represents the conclusion of the rule, is calculated via the
formulas:

D = f(a) , ∑
n

i=
ii Csf + = sf

1
0a (1)

where a is the activation value and f(x) the activation function,
which is a threshold function:

 1 if a ≥ 0
 f(a) =
 -1 otherwise

Hence, the output can take one of two values, ‘-1’ and ‘1’,
representing failure and success of the rule respectively.

predicate. The symbolic predicates are {is, isnot}, whereas the
numeric predicates are {<, >, =}. <r-predicate> can only be a
symbolic predicate. <value> denotes a value. It can be a symbol
or a number. <bias-factor> and <significance-factor> are (real)
numbers. The significance factor of a condition represents the
significance (weight) of the condition in drawing the
conclusion.

2.2 Constructing Neurules from Training Examples
Each neurule is individually trained via a training set, which
contains training examples in the form [v1 v2 … vn d], where vi,
i= 1, …,n are their component values, corresponding to the n
inputs of the neurule, and d is the desired output (‘1’ for
success, ‘-1’ for failure). We call success examples the
examples with d=1 and failure examples the ones with d=-1.
The learning algorithm employed is the standard least mean
square (LMS) algorithm.

However, there are cases where the LMS algorithm fails to
specify the right significance factors for a number of neurules.
That is, the adaline unit of a rule does not correctly classify
some of the training examples. This means that the training
examples correspond to a non-separable (boolean) function. To
overcome this problem, the initial training set is split into two
subsets in a way that each subset contains success examples,
which are ‘close’ to each other in some degree. The closeness
between two examples is defined as the number of common
component values. For example, the closeness of [1 0 1 1 1]
and [1 1 0 1 1] is ‘2’. Also, we define as least closeness pair
(LCP), a pair of success examples with the least closeness in a
training set. There may be more than one LCP in a training set.

Initially, a LCP in the training set is found and two subsets
are created each containing as its initial element one of the
success examples of that pair, called its pivot. Each of the
remaining success examples is distributed between the two
subsets based on its closeness to the pivots. More specifically,
each subset contains the success examples, which are closer to
its pivot. Then, the failure examples of the initial set are added
to both subsets, to avoid neurule misfiring. After that, two

D
(sf0)

(sfn) (sf1) . . . (sf2)

(sf0) if C1 (sf1),

 C2 (sf2),

 …

 Cn (sfn)

 then D

 (a) (b)
Figure 1. (a) Form of a neurule (b) corresponding adaline unit

The general syntax of a neurule (in a BNF notation, where
‘{}’ denotes zero, one or more occurrences and ‘<>’ denotes
non-terminal symbols) is:
<rule>::= (<bias-factor>) if <conditions> then <conclusions>
<conditions>::= <condition> {, <condition>}
<conclusions>::= <conclusion> {, <conclusion>}
<condition>::= <variable> <l-predicate> <value>

 (<significance-factor>)
<conclusion>::= <variable> <r-predicate> <value> .

In the above definition, <variable> denotes a variable, that is
a symbol representing a concept in the domain, e.g., ‘sex’,
‘pain’ etc, in a medical domain. A variable in a condition can
be either an input variable or an intermediate variable, whereas
a variable in a conclusion can be either an intermediate or an
output variable. <l-predicate> denotes a symbolic or a numeric

copies of the initial neurule, one for each subset, are trained
employing the LMS learning algorithm. If the factors of a copy
misclassify some of its examples, the corresponding subset is
further split into two other subsets, based on one of its LCPs.
This continues, until all examples are classified. This means
that from an initial neurule more than one final neurule may be
produced, called sibling neurules (for details see [10]).

To illustrate how splitting is performed, we use as an
example the training set presented in Table 1. As it is clear,
the majority of the examples in the training set are failure
examples, whereas success examples, which are shown in
bold, are a minority. The training set has been extracted
from empirical data concerning five input (domain)
variables and an output variable (disease) that depends on
the five domain variables. Given that each input variable can
take more than one discrete value, each initial neurule has
thirteen conditions (C1-C13). D corresponds to the
conclusion. Actually Table 1, for simplicity reasons, shows
only a subset of the failure examples.

C1 C2 Cn

Table 1. An example training set
C

1
C

2
C

3
C

4
C

5
C

6
C

7
C

8
C

9
C

10
C

11
C

12
C

13
D

-1 -1 1 -1 -1 1 1 1 -1 1 -1 -1 -1 -1
-1 -1 1 -1 -1 1 1 1 1 -1 -1 -1 -1 1
-1 -1 1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 1 1 -1 1 -1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1
-1 -1 1 1 -1 1 -1 -1 -1 -1 -1 1 1 1
-1 -1 1 1 -1 1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 1 1 -1 1 -1 -1 -1 1 -1 1 -1 -1
-1 -1 1 1 -1 1 -1 -1 1 -1 -1 1 -1 -1
-1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 -1 1
-1 1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1
-1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1
-1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 -1
-1 1 1 -1 -1 1 -1 1 -1 1 -1 -1 -1 1
1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1
1 1 1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1
1 1 1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1
1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1

For presentation reasons, names (P1-P5) are assigned to

the five success examples/patterns (of Table 1), as presented
in Table 2. Also, let F be the set of failure examples in the
training set.

Table 2. Success examples
symbol description

P1 [-1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1]
P2 [-1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1]
P3 [-1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1]
P4 [-1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1]
P5 [1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1]

Figure 2. Splittings of the training set of Table 1

Due to inseparability, the initial training set {P1, P2, P3,

P4, P5} ∪ F is split in two subsets: {P1, P3, P4} ∪ F and
{P2, P5} ∪ F with as least closeness pair (P1, P5). Subset
{P1, P3, P4} ∪ F is subsequently split into subsets {P3} ∪ F
and {P1, P4} ∪ F. Subset {P3} ∪ F produces a neurule (see

Figure 3). Subset {P1, P4} ∪ F produces another neurule.
Similarly, from subset {P2, P5} ∪ F two other neurules are
produced (corresponding to its two leaves). The performed
splittings are illustrated in Figure 2, as a tree.

In creating the training subsets, some requirements were
implicitly satisfied. Each training subset contains: (a) all the
failure examples of the initial training set to protect from
misactivations and (b) at least one success example to
guarantee the activation of the corresponding neurule.
Furthermore, the two subsets created by splitting a (sub)set do
not have common success examples to avoid having different
neurules activated by the same success example(s). In the
following sections, the approach to splitting based on closeness
will be called CLOSENESS-SPLIT.

A point of interest in training a neurule with a non-separable
training set is how to choose a least closeness pair (LCP), in the
process of producing the two subsets of the initial training set.
Not all LCPs result in the same number of final neurules. So,
we are looking for the LCP that finally produces the minimum
number of sibling neurules. We tried three heuristic methods
for that: the random choice, the best distribution and the mean
closeness method. The random choice method (RC) chooses
randomly one of the LCPs and is the simplest and least
expensive of the three methods. The best distribution method
(BD) suggests choosing the LCP that assures distribution of the
two elements of all the other (or most of the other) LCPs in
different sets. So, examples with least closeness will be
included in different sets, which may assure separability. The
mean closeness method (MC) initially computes the mean
closeness of each of the two subsets to be created from each
LCP. Then, it calculates the mean closeness of each LCP,

which is the mean closeness of the two subsets, and chooses the
LCP with the greatest mean closeness. It is obvious that MC is
(computationally) the most expensive method.

NR1
(-13.5) if venous-conc is slight (12.4),
 blood-conc is moderate (11.6),
 art-conc is moderate (8.8),
 scan-conc is normal (8.4),
 cap-conc is moderate (8.4),
 blood-conc is slight (8.3),
 venous-conc is moderate (8.2),
 venous-conc is normal (8.0),
 arterial-conc is slight (-5.7),
 cap-conc is slight (4.5),
 blood-conc is normal (4.4),
 blood-conc is high (1.6),
 venous-conc is high (1.2)
 then disease is inflammation

Figure 3. One of the produced neurules

3 ALTERNATIVE APPROACHES
In this section, we present two alternative approaches to
splitting a non-separable training set not solely relying on
closeness. The two alternative approaches will be called
ALTERN-SPLIT1 and ALTERN-SPLIT2 respectively. Both of
these approaches satisfy the implicit requirements mentioned in
the previous section. The idea behind both approaches is
simple. More specifically, they focus on the examples which
are misclassified by the weights calculated by LMS and try to
split the training set into two subsets: one containing the
correctly classified success examples (along with all failure
examples) and one containing the misclassified success
examples (along with all failure examples). This process can be
followed only if some (not all) success examples (and possibly
failure examples) are misclassified. If all success examples are
misclassified or if only failure examples are misclassified, there
is no alternative but to split based on closeness. Therefore, in
this process one should distinguish the following cases: (a) all
of the success examples are misclassified, (b) only failure
examples are misclassified, (c) only some of the success
examples and none of the failure ones are misclassified, (d)
failure examples and some of the success examples are
misclassified. In cases (a) and (b) splitting is based on
closeness. The two approaches differ only in the way of
handling case (d).

More formally, approach ALTERN-SPLIT1 is as follows:
1. If all success examples are misclassified by the calculated

weights, split the training set based on closeness.
2. Else, if only failure examples are misclassified, split the

training set based on closeness.
3. Else, if only some of the success examples (and none of the

failure examples) are misclassified, split the training set in
two subsets: one containing the correctly classified success

examples (along with all failure examples) and one
containing the misclassified success examples (along with all
failure examples).

4. Else, if failure examples and some of the success examples
are misclassified, split the training set in two subsets: one
containing the correctly classified success examples (along
with all failure examples) and one containing the
misclassified success examples (along with all failure
examples).
Approach ALTERN-SPLIT2 does the same as ALTERN-

SPLIT1 in steps 1, 2, 3 and handles step 4 based on closeness.
It can be easily seen that ALTERN-SPLIT2 lies between
CLOSENESS-SPLIT and ALTERN-SPLIT1.

4 EXPERIMENTAL RESULTS
In this section, we present various experimental results using
datasets from the UCI Machine Learning Repository [15]. The
experimental results involve the following aspects: (a)
evaluation of the three different splitting policies based on
closeness (i.e., RC, BD, MC), (b) comparison of the three
approaches to splitting, CLOSENESS-SPLIT, ALTERN-
SPLIT1 and ALTERN-SPLIT2 and (c) evaluation of the
generalization capability of neurules and comparison with the
generalization capabilities of the back propagation neural
networks and the adaline unit.

Table 3. Number of neurules produced by the RC, MC and BD policies

Dataset Condi-
tions

Conclu-
sions RC MC BD

Monks1_train
(124 patterns)

17 2 17 17 13

Monks2_train
(169 patterns)

17 2 46 47 38

Monks3_train
(122 patterns)

17 2 14 11 12

Tic-Tac-Toe
(958 patterns)

27 2 26 26 24

Car
(1728 patterns)

21 4 151 163 153

Nursery
(12960 patterns)

27 5 830 839 823

Table 3 depicts experimental results for CLOSENESS-

SPLIT comparing RC, MC and BD. Comparison is based on
the number of neurules produced from each splitting method,
shown in columns ‘RC’, ‘MC’ and ‘BD’. Column ‘Conditions’
denotes the number of conditions for each sibling neurule and
column ‘Conclusions’ the number of different (final)
conclusions. For the ‘monks’ datasets we used the training sets
provided in the UCI Repository. Based on the results of Table
3, none of the three methods is clearly better than the others for
all datasets. Further on, there is no great difference in the
number of neurules produced by the three methods. BD
performs better in most of the cases. RC, the simplest of the

three methods, performs quite well even in the large datasets
compared to the other two more complex methods. On the other
hand, MC, which is computationally the most expensive
method, does not perform quite well compared to the other
methods to justify its use. So, BD or RC can be considered as
better alternatives as far as the number of produced neurules is
concerned. The number of produced neurules is the basic
criterion of the comparisons, because it plays a crucial role in
inference efficiency and neurule-base size.

Table 4 presents experimental results regarding ALTERN-
SPLIT1 and ALTERN-SPLIT2. RC, MC and BD play a role
for subsets in which splitting based on closeness is used.

Table 5 presents summary results comparing the three
approaches to splitting, CLOSENESS-SPLIT, ALTERN-
SPLIT1 and ALTERN-SPLIT2. Comparison is based on the
minimum number of neurules produced from each method. In
parentheses, the name of the splitting policy (i.e., RC, BD, MC)
used, when producing the minimum number of neurules is
shown. CLOSENESS-SPLIT is generally better than the other
two methods. This demonstrates the effectiveness of the notion
of ‘closeness’. This last conclusion is further intensified by the
fact that ALTERN-SPLIT2 that lies between ALTERN-SPLIT1
and CLOSENESS-SPLIT generally performs better than
ALTERN-SPLIT1. The results also show that it may be worth
to employ ALTERN-SPLIT1 and ALTERN-SPLIT2. A further
result is that BD generally performs better than RC and MC.

Table 4. Number of neurules produced by ALTERN-SPLIT1 and

ALTERN-SPLIT2
ALTERN-SPLIT1 ALTERN-SPLIT2

Dataset
RC MC BD RC MC BD

Monks1_train 22 24 24 19 16 13
Monks2_train 34 32 33 43 49 39

Monks3_train 15 15 15 14 11 13
Tic-Tac-Toe 44 41 40 43 41 38

Car 189 171 169 152 161 154

Nursery 1330 1382 1378 837 842 821

Table 5. Number of neurules produced by CLOSENESS-SPLIT,

ALTERN-SPLIT1 and ALTERN-SPLIT2

Dataset CLOSENESS-
SPLIT

ALTERN-
SPLIT1

ALTERN-
SPLIT2

Monks1_train 13 (BD) 22 (RC) 13 (BD)
Monks2_train 38 (BD) 32 (MC) 39 (BD)
Monks3_train 11 (MC) 15 (RC, MC, BD) 11 (MC)
Tic-Tac-Toe 24 (BD) 40 (BD) 38 (BD)

Car 151 (RC) 169 (BD) 152 (RC)
Nursery 823 (BD) 1330 (RC) 821 (BD)

Tables 6 and 7 present results regarding the classification

accuracy (generalization) of neurules on unseen test examples.
Table 6 compares the classification accuracy of neurules
produced from the three splitting policies based on closeness.
Table 7 compares the classification accuracy of neurules (i.e.,
the best result of Table 6) with the ones of the adaline unit and
back-propagation neural networks. The results for each dataset
(except for the three monks datasets) were produced by using
75% of the examples as training set and 25% of the examples as

testing set in four different runs. Needless to say that the
training examples in the test sets were not included in the
training sets. Different and disjoint test sets were used in each
run, so that the union of the four test sets formed the whole
dataset. The classification accuracy was computed as the mean
value of the accuracies obtained from the four runs. For
‘monks1’ and ‘monks2’ datasets this procedure for creating
training and test sets was applied to the corresponding test sets
of 432 training examples available in the UCI repository. For
the ‘monks3’ dataset, the training and test set available in the
UCI repository were used since the training set is reported to
contain noise. It should be mentioned that we were not able to
construct a back-propagation neural network for the ‘Nursery’
dataset with competitive generalization capability.

For the training of back-propagation neural networks, the
standard back-propagation algorithm was employed using a
momentum in adjusting the weights and one layer of hidden
nodes. The values of these three back-propagation parameters
along with the average error threshold were tuned separately for
the training sets of each dataset after a number of experiments
(based on error-and-trial). Training stopped when either the
number of training epochs reached an upper threshold or the
average squared error became less than or equal to the average
error threshold. Furthermore, no cross-validation was used
when training the adaline unit, the neurules or the back-
propagation neural network (perhaps with cross-validation the
results of Table 7 for all approaches would have been slightly
better). Also, if the activations of multiple output nodes
exceeded 0.5 (when a test example was given as input), then the
example took the category of the most active output node (i.e.,
the one with the greatest activation) [20].

Table 6. Generalization of neurules produced from RC, MC, BD policies
Dataset RC MC BD

Monks1 100% 100% 100%

Monks2 96.30% 96.99% 97.92%

Monks3 92.36% 93.52% 96.06%

Tic-Tac-Toe 98.85% 97.50% 98.12%

Car 94.44% 94.56% 94.50%

Nursery 99.63% 99.53% 99.52%

 Table 7. Generalization of adaline unit, neurules and back-propagation

neural network
Dataset Adaline Unit Neurules BPNN
Monks1 67.82% 100% 100%
Monks2 43.75% 97.92% 100%
Monks3 92.13% 96.06% 97.22%

Tic-Tac-Toe 61.90% 98.85% 98.23%

Car 78.93% 94.56% 95.72%

Nursery 82.26% 99.63%

The results in Tables 6 and 7 show that neurules generalize

quite well. Table 6 shows that none of the three splitting
policies performs better than the others in all datasets.
Comparing the results of Table 5 and Table 6, it can be said that
it is not unlikely that a splitting policy may generalize better

than the other policies although it produced a greater number of
neurules. Table 7 shows that neurules outperform the adaline
unit and are worse than back-propagation neural networks.
These results are very promising. It was expected that the
generalization capability of neurules would be somewhere
between the adaline unit and the back-propagation neural
network. This is due to the nature of the three approaches: the
adaline unit is a single unit for performing classification, a
neurule base consists of a number of autonomous adaline units
(neurules) and a back-propagation neural network is a multi-
layer network containing hidden nodes useful for the
computation of non-separable functions.

A parameter not shown in Table 7 involves the total effort in
constructing the corresponding knowledge base. The
construction of a neurule base is easier than the construction of
a back-propagation neural network. When constructing
neurules, one should only try out the different splitting
approaches. So, construction of neurules is straightforward. On
the other hand, in the case of a back-propagation neural
network, one should simultaneously adjust three different
parameters (based on error-and-trial): the number of hidden
nodes (assuming one hidden layer), the learning rate and the
momentum. The number of hidden nodes is an integer, whereas
the learning rate and the momentum are real numbers lying
between 0.0 and 1.0. Simultaneously adjusting those three
parameters can be a non-trivial and time-consuming task.
However, the adjustment of those parameters plays an
important role in the classification accuracy of the neural
network regarding the training and test sets.

It should be also mentioned that when we developed a
method for producing neurules from training examples [10], we
did not have generalization as our primary intention. Our effort
was to develop an alternative method to the one producing
neurules through conversion from existing symbolic rule bases
[9]. In this way, the knowledge acquisition process is facilitated
since neurules can be constructed from two alternative sources,
existing symbolic rule bases and training examples. However,
according to the results of this paper, regarding generalization
capability of neurules, neurules could be a choice in
applications with available training examples and in which
naturalness, modularity of the knowledge base and provision of
interactive inference and explanation mechanisms are desirable
factors besides generalization. Obviously in applications in
which generalization is the only concern, one should choose
back-propagation neural networks.

5 CONCLUSIONS
In this paper, we investigate previously unexplored aspects
regarding the construction of neurules from training examples.
Results validate our initial choice, demonstrating the
effectiveness of solely using the notion of ‘closeness’ to handle
non-separable training sets. Alternative splitting approaches
performed worse. Furthermore, experimental results show that
neurules generalize quite well even compared to back-
propagation neural networks. Our future research will involve
investigation of possible improvements to the construction and
generalization capability of neurules.

REFERENCES
[1] R. Andrews, J. Diederich and A. Tickle, ‘A survey and critique for

extracting rules from trained ANN’, Knowledge-Based Systems, 8,
373-389, (1995).

[2] A.S. d’Avila Garcez, K. Broda, D.M. Gabbay, ‘Symbolic knowledge
extraction from trained neural networks: A sound approach’, Artificial
Intelligence 125, 155-207, 2001.

[3] S. Bader and P. Hitzler, ‘Dimensions of neural-symbolic integration –
a structured survey’, In S. Artemov, H. Barringer, A. S. d'Avila
Garcez, L. C. Lamb, J. Woods, We Will Show Them: Essays in
Honour of Dov Gabbay, International Federation for Computational
Logic, College Publications, volume 1, 167-194, 2005.

[4] I. Cloete, J. M. Zurada (eds.), Knowledge-Based Neurocomputing,
MIT Press, 2000.

[5] A.S. d’Avila Garcez, K. Broda, D.M. Gabbay, Neural-symbolic
Learning Systems: Foundations and Applications, Perspectives in
Neural Computing, Springer-Verlag, Heidelberg, 2002.

[6] L-M Fu, Neural Networks in Computer Intelligence, McGraw-Hill,
1994.

[7] S.I. Gallant, Neural Network Learning and Expert Systems, MIT
Press, 1993.

[8] A.Z. Ghalwash, ‘A Recency Inference Engine for Connectionist
Knowledge Bases’, Applied Intelligence, 9, 201-215, (1998).

[9] I. Hatzilygeroudis and J. Prentzas, ‘Neurules: Improving the
Performance of Symbolic Rules’, International Journal on AI Tools,
9, 113-130, (2000).

[10] I. Hatzilygeroudis and J. Prentzas, ‘Constructing Modular Hybrid
Knowledge Bases for Expert Systems’, International Journal on AI
Tools, 10, 87-105, (2001).

[11] I. Hatzilygeroudis and J. Prentzas, ‘An Efficient Hybrid Rule Based
Inference Engine with Explanation Capability’, Proceedings of the
14th International FLAIRS Conference, Key West, FL, 227-231,
(2001).

[12] I. Hatzilygeroudis and J. Prentzas, ‘Neuro-Symbolic Approaches for
Knowledge Representation in Expert Systems’, International Journal
of Hybrid Intelligent Systems, 1, 111-126, (2004).

[13] M. Hilario, ‘An Overview of Strategies for Neurosymbolic
Integration’, in [16].

[14] K. McGarry, S. Wertmer, and J. MacIntyre, ‘Hybrid neural systems:
from simple coupling to fully integrated neural networks’, Neural
Computing Surveys, 2, 62-93, (1999).

[15] L.R. Medsker, Hybrid Neural Networks and Expert Systems, Kluwer
Academic Publishers, Boston, 1994.

[16] D.J. Newman, S. Hettich, C.L. Blake, C.J. Merz, ‘UCI Repository of
machine learning databases’ [http://www.ics.uci.edu/~mlearn/
MLRepository.html]. Irvine, CA, University of California,
Department of Information and Computer Science (1998).

[17] J. Prentzas, I. Hatzilygeroudis and A. Tsakalidis, ‘Updating a Hybrid
Rule Base with New Empirical Source Knowledge’, Proceedings of
the 14th IEEE International Conference on Tools with Artificial
Intelligence, Washington, DC, USA, 9-15, (2002).

[18] J. Prentzas and I. Hatzilygeroudis, ‘Rule-based Update Methods for a
Hybrid Rule Base’, Data and Knowledge Engineering, 55, 103-128,
(2005).

[19] R. Sun and E. Alexandre (eds), Connectionist-Symbolic Integration:
From Unified to Hybrid Approaches, Lawrence Erlbaum, 1997.

[20] G. Towell and J. Shavlik, ‘Knowledge-Based Artificial Neural
Networks’, Artificial Intelligence 70(1-2), 119-165, (1994).

[21] S. Wermter and R. Sun (eds), Hybrid Neural Systems, Springer-
Verlag, Heidelberg, 2000.

