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Abstract. In this paper, we present the design, implementation and evaluation of 
HIGAS, a hybrid intelligent system that deals with diagnosis and treatment 
consultation of acid-base disturbances based on blood gas analysis data. The 
system mainly consists of a fuzzy expert system that incorporates an 
evolutionary algorithm in an off-line mode. The diagnosis process, the input 
variables and their values were modeled based on expert’s knowledge and 
existing literature. The fuzzy rules are organized in groups to be able to simulate 
the diagnosis process. Differential evolution algorithm is used to fine-tune the 
membership functions of the fuzzy variables. Medium scale experimental results 
show that HIGAS does better than its non-hybrid version, non-experts and other 
previous computer-based approaches. 
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1. Introduction   
Accurate diagnosis and treatment of electrolyte disturbances is an ability that only 
experienced doctors that have faced many patients for many years can perform. 
Unfortunately, even undergraduate studies on human physiology do not pay attention to 
this topic, so that many difficulties are faced during every-day clinical practice by general 
doctors, intensive care personnel, etc. Understanding a disturbance occurred after a 
cardiovascular shock or after an operation is crucial for a clinician who has to treat this 
serious situation for patients’ life. There are two main acid-base balance disturbances, 
acidosis and alkalosis, further distinguished into metabolic acidosis, metabolic alkalosis, 
respiratory acidosis, respiratory alkalosis and their combinations (mixed disorders). 

A number of attempts to tackle disturbances have already been proved successful, but 
not for all the types of them. Simple calculations [1, 2], diagrams [3, 4, 5] and other 
computer-based methods [6] are used to help doctors to evaluate and treat the mixed or 
plain disturbances. In [5], in order to examine the diagnostic validity of the proposed 
diagrammatic methods, arterial blood gas samples drawn from 114 Intensive Care Unit 
(ICU) patients were used. The samples were interpreted using the Grogono diagram [4] 
and the following approaches, as comparators: (a) The Siggaard-Andersen (S-A) chart [3], 
(b) the Oxygen Status Algorithm (OSA) [2] and (c) two physicians with more than 10 
years of experience in ICUs, considered as experts in acid-base balance disturbances. 
There, has been proved that the Grogono diagram gives better results than OSA, and both 
better than the S-A chart. However, the authors conclude that Grogono diagram cannot be 
safely used for the diagnosis of acid-base balance disturbances in everyday clinical 
practice, because it has been shown to provide inaccurate diagnoses in at least 25% of the 
cases. So, they suggest that the creation of a better computer-based system to assist at least 
non-expert doctors in making an initial diagnosis is still very desirable. 

There have been some efforts to use intelligent systems to deal with aspects of the 
above problem [7, 8, 9, 10]. From them, [8] and [10] refer to infants related aspects. The 
rest deal with what we call ‘disturbances’ and not with all aspects of what we call 
‘disorders’ (the causes of disturbances). They also don’t deal with treatment proposals. 
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Hybrid intelligent systems are systems that mix different intelligent methods and make 
them “work together” to achieve a better solution to a problem, compared to using a single 
method for the same problem. During last decade hybrid intelligent systems have been 
used to tackle medical problems [11]. From the above efforts, [7] and [10] use hybrid 
intelligent systems. In [6] a combination of frames and rules is used, whereas in [10] a 
combination of a back-propagation neural net and decision algorithms. Neither uses fuzzy 
sets to represent the inherent vagueness in some of the parameters. 

In this paper, we present HIGAS, a Hybrid Intelligent system for the diagnosis and 
treatment of acid-base disturbances based on blood GAS analysis data. Diagnosis is 
achieved in two stages. In the first stage, diagnosis of the disturbance is made, whereas in 
the second, diagnosis of the possible disorder and corresponding treatment is made.  

The paper is organized as follows: in Section 2 we introduce the medical knowledge 
involved and the diagnosis process model we designed. In Section 3, development issues 
of our intelligent system are presented. Section 4 presents evaluation results for the system 
and finally Section 5 concludes the paper.  
 
2. Medical Knowledge Modelling 
 
Acid-base state in a body fluid is physically determined by several independent variables. 
In blood plasma in vivo, the independent variables are: (1) PCO2; (2) the ‘strong ion 
difference’ (SID), i.e. the difference between the sums of all the strong (fully dissociated, 
chemically non-reacting) cations (Na+, K+, Ca2+, Mg2+) and all the strong anions (Cl and 
other strong anions) and (3) concentrations of nonvolatile weak acids (i.e., for each of 
them, the sum of its dissociated and undissociated forms, Stewart's symbol Atot). Normal 
acid-base status is obtained when the independent variables have normal (empirically 

established) values. Abnormality of one or more of the independent variables underlies all 
acid-base disturbances. Adjustment of the independent variables is the essence of all 
therapeutic interventions, because none of the “dependent variables” (e.g., pH, [HCO3 ]) 
can be changed primarily or individually: all dependent variables change simultaneously, if 
and only if one or more of the independent variables changes. 

A classification of acid-base disturbances based on this view is shown in Table 1a. 
Metabolic acid-base disturbances can be caused by two types of abnormalities: mixed and 
unmixed abnormal concentrations of nonvolatile weak acids. 
 

Table 1a: Examples of acid-base disturbances 
Disturbance pH Primary 

Disturbance 
Expected response 

Unmixed Disturbances 
A.  Metabolic acidosis  < 7.38 HCO3 < 22 meq/l DPCO2 (↓) = (1.0-1.3) DHCO3 
B.  Metabolic alkalosis  > 7.42 HCO3 > 25 meq/l DPCO2 (↑) = (0.4-0.9) DHCO3 
C.  Respiratory acidosis 
C1. Acute C 
C2. Chronic C 
C3. C1 and A or B 
C4.  C1 → C2   

< 7.38 PCO2 > 43 mmHg  
DHCO3 (↑) = (0.08-0.12)DPCO2 
DHCO3 (↑) = (0.25-0.55)DPCO2 
DHCO3 (↑) = (0.12-0.19)DPCO2 
DHCO3 (↑) = (0.16-0.25)DPCO2 

…    
Mixed disturbances (primary and secondary) 
1)   A and C < 7.38 HCO3 < 22 meq/l DPCO2 (↓) < 1.0  DHCO3 or   

PCO2 > 40 mmHg 
2)   A and  D <7.38 HCO3 < 22 meq/l DPCO2 (↓) >  1.3  DHCO3 
…    
9) A  and  B   7.38-7.42 and AG > 14 
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Table 1b: Examples of disorders that cause acid-base disturbances 
Metabolic Alkalosis with AG = normal (10-14) 
 Na + K < Cl in 

urine samples 
K > 5.5 HCO3 in dose of 0.5-2 

meq/Kg 
Urine PCO2  

if alkalic 
RTA II No No Urine pH > 7.4 and HCO3 < 24 

meq/l (FE) HCO3 > 15% 
 

RTA III No No Urine pH > 7.4 and HCO3 = 24 
meq/l (FE) HCO3 =1-3 % 

PCO2 > 70 
mmHg 

RTA I 
… 

No No Urine pH > 7.4 and HCO3 = 24 
meq/l (FE) HCO3 = 1-3 % 

Urine PCO2 
= plasma 
PCO2 

 
The initial knowledge on the field of acid-base disturbances has been acquired from 

experts as well as from the existing literature. Based on that, we constructed the model of 
Fig. 1 for the diagnosis and treatment process. According to that, initially, an expert 
clinician requires the following information from the blood gas analyser: (a) the pH value, 
(b) the HCO3 concentration , (c) the partial pressure value of CO2  (PCO2) and (d) the 
Anion Gap value, to make an initial diagnosis, concerning the type of disturbance. 

To confirm the disturbance diagnosis, it goes a step further by diagnosing the 
underlying disorder, which causes the disturbance. In this second stage, further 
information related to specific diagnostic laboratory tests is required. Variable 
dependences and diagnostic rules can be seen in Table 1b.  

In blood-gas interpretation there is a complete interdependence of laboratory and 
clinical data and, although the former is often quite precise, the latter may not be, yet both 
must be accounted for and reconciled for a successful diagnostic solution. Dependencies 
also exist in that, whenever a major system is affected, the effect on the body may be 
global and other systems may follow into the destabilisation spiral, if the situation is not 
quickly rectified. Thus, measurement trends are closely observed. 

 
 

Blood 
Gas Analyzer 

data 

Additional 
diagnostic 
test data 

   
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: General Model for Blo
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approximate reasoning, which is reasoning with inaccurate (or fuzzy) values, expressed as 
linguistic terms.  

Based on our expert, we specified a set of parameters that play a role in diagnosis for 
each of the entities in the process model (Fig. 1). Finally, we resulted in a number of 
parameters, which are distinguished in:. 

Input parameters: pH, HCO3 concentration, partial pressure of CO2 (PCO2) and anion 
gap (which represent gas analyzer data). They are used in the form of some ratios (see 
Table 1a), which are represented as fuzzy variables (see Fig. 2). 
Intermediate output parameters: disturbance_diagnosis (which represents the possible 
disturbance, i.e. one of: metabolic acidosis, metabolic alkalosis, respiratory acidosis, 
respiratory alkalosis and their combinations).  
Intermediate input parameters: urine pH, plasma pH, Standard Base Excess, etc (which 
represent laboratory test data). They are also represented as fuzzy variables. 
Output parameters: disorder_diagnosis (which represents the diagnosed disorder, 
which can be one of RTA II, gastric fluid loss, etc) and proposed_treatment (with as 
possible values: intravenous dilute hydrochloric acid, ammonium chloride, etc.). 

 
Figure 2. Fuzzy values and membership function for ‘DHCO3/DPCO2’. 

 
Fuzzy values and corresponding membership functions have been determined by the 

aid of the expert and the literature. Examples of values and corresponding membership 
functions are shown in Fig. 2. Due to the nature of the values and for better performance of 
the evolution algorithm, used to fine-tune them, we use only triangles to represent 
membership functions.  

 
3.2 The fuzzy expert system 
 
The developed fuzzy expert system has the typical structure of such systems [12, 13]. The 
rule base of the expert system includes (actually) crisp and fuzzy rules. A fuzzy rule 
includes one or more fuzzy variables. Definition of each fuzzy variable consists of 
definitions of its values. Each fuzzy value is represented by a fuzzy set, a range of crisp 
(i.e. non-linguistic) values with different degrees of membership to the set. The degrees are 
specified via a membership function. 

Reasoning in such a system includes three stages: fuzzification, inference, 
defuzzification. In fuzzification, the crisp input values (from the fact database) are 
converted to membership degrees (fuzzy values). In the inference stage, the MIN method 
is used for the combination of a rule’s conditions, to produce the membership value of the 
conclusion, and the MAX method is used to combine the conclusions of the rules. In 
defuzzification, the centroid method is used to convert a fuzzy output to a crisp value, 
where applicable.  
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Figure 3. Inference flow in HIGAS 

 
The system gives its outputs in a semi-fuzzy form. E.g. the values of the diagnosed 

disorder with their corresponding membership values are presented to the user alongside 
system’s decision. This gives the user the opportunity to decide by himself/herself 
something different from the system in some special cases and also acts as some kind of 
explanation for the final decision of the system, given that membership values are 
presented as degrees of certainty. 

To represent the diagnosis process model of Fig. 1, we organized rules in the rule base 
into three groups: disturbance diagnosis rules, disorder diagnosis rules and treatment 
proposing rules. The current patient data are stored as facts. Each time the reasoning 
process requires a value, it gets it from the facts list. In an interactive mode, it could be 
given by the user. Figure 3 presents how the rule groups and the facts/user are 
used/participates during the reasoning process to simulate the diagnosis process, whereas 
Figure 4 presents the architecture of HIGAS, where apart from the expert systems modules 
an evolutionary algorithm module is used off-line to fine-tune membership functions, as 
explained in the next section. 
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Figure 4. The architecture of HIGAS 

 
3.3 The EA Module 
 
An evolutionary algorithm (EA) is used for membership functions optimization, which are 
initially intuitively chosen. Given that the optimization of fuzzy membership functions 
may involve many changes to many different functions, and that a change to one function 
may effect others, the large possible solution space for this problem is a natural candidate 
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for an EA based approach despite many neuro-fuzzy approaches that use a gradient 
descent-learning algorithm to fine-tune the parameters of the fuzzy systems. The 
evolutionary algorithm optimises the antecedent and consequent membership functions of 
a number of fuzzy rules.  

We use the ‘differential evolution’ (DE) algorithm [14, 15] to achieve that. As other 
evolutionary algorithms, DE maintains a population (a set) of solutions to the optimization 
problem at hand. The main idea in DE is to use vector differences in the creation of new 
candidate solutions, whereas traditional EAs rely on random perturbation (mutation) of a 
solution and mixing of two or more solutions (recombination). Another major difference is 
that the three phases of a standard EA (selection, recombination, and mutation) are 
combined to one operation, which is carried out for each individual. In the standard EA, 
each phase is performed on the entire population. In contrast, the DE algorithm iterates 
through the population and creates, for each population index i, a potential candidate C[i] 
by vector addition (mutation) and a variant of uniform crossover (recombination). 
Selection is straightforward and very simple; the candidate solution C[i] replaces P[i] if it 
is better. 

DE algorithm runs separately for each fuzzy variable. Let v be a fuzzy variable that has 
three fuzzy sets/values (A, B and C) and µA(v), µB(v), µC(v) be the three membership 
distributions over fuzzy sets A, B and C respectively. All membership curves are isosceles 
triangles (see e.g. Fig. 2). For optimization purposes, we code each triangle via six pairs of 
values (xi, yi), i.e. two pairs for each edge of the triangle or one pair for each node of an 
edge. Each pair consists of the two co-ordinates of the corresponding node of an edge. 
Thus, the genome in the corresponding population has 19 fields, 18 (=3x6) for the three 
fuzzy sets and one for the expected output. A number of training medical data is used to 
specify the “better” genome, the one that satisfies more training examples. The result of 
the DE algorithm application is changes to the co-ordinate pairs of the triangles of the 
membership functions of the values of a fuzzy variable.  
 
3.4 Implementation issues 
 
The system has been implemented in FuzzyCLIPS 6.1b expert system shell [16]. Finally, 
about 72 rules and 10 templates have been constructed. Patient data is organized by using 
CLIPS templates. To implement reasoning flow, different priorities have been used for 
different rule groups. The EA module has been implemented using the software provided 
in [17].  
 
4. System Evaluation 
 
To evaluate HIGAS, we used 200 patient cases, successfully diagnosed and treated by the 
experts in critical care, from the database of the University Hospital of Patras, Greece. We 
used two versions of HIGAS, one without the use of the EA module results (untuned) and 
the other after having tuned the membership functions of the fuzzy values of the fuzzy 
variables of the system via the EA module. We used 40% of the cases as the training data 
set for the DE algorithm needs and the rest 60% as the test data set. We also used a third 
participant in the experiment, a group of three non-expert clinical doctors in critical care. 
 
4.1 HIGAS vs Clinical Doctors 
 
The results are presented in Tables 2a and 2b. Table 2a refers to disorder diagnosis, 
whereas Table 2b to treatment proposal. We used ‘accuracy’ as the main metric 
accompanied by ‘specificity’ and ‘sensitivity’ for better interpretation of the results. The 
results show that the tuned version of HIGAS did better than any other participant (85% 
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and 87%) as far as accuracy is concerned with a good balance between specificity and 
sensitivity.  

Table 2a. Comparison of HIGAS with clinicians (disorder diagnosis) 
DISORDER DIAGNOSIS CLINICIANS HIGAS 

 1st 2nd 3rd TUNED UNTUNED 
Specificity 0.62 0.74 0.67 0.83 0.79 
Sensitivity 0.67 0.70 0.65 0.88 0.83 
Accuracy 0.64 0.72 0.66 0.85 0.81 

 
Table 2b. Comparison of HYGAS with clinicians (proposed treatment) 

TREATMENT CLINICIANS HIGAS 
 1st 2nd 3rd TUNED UNTUNED 
Specificity 0.69 0.75 0.66 0.89 0.80 
Sensitivity 0.70 0.80 0.69 0.83 0.84 
Accuracy 0.70 0.77 0.67 0.87 0.82 

 
 
4.2 HIGAS vs Computer-based systems 
 
We also compared the tuned version of HIGAS with other two classical computer-based 
methods, the Grogono diagram and the Oxygen Status Algorithm (OSA), whose 
implementations are available in the web [4, 18]. The results, presented in Table 3, show 
the superiority of HIGAS. Notice, that the results concern only disturbance diagnosis, 
because those systems do not support disorder diagnosis and treatment proposal.  
 

Table 3. Comparison of the HIGAS and other systems (disturbance diagnosis) 

POSSIBLE 
DIAGNOSIS 

GROGONO 
DIAGRAM HIGAS 

OXYGEN 
STATUS 

ALGORITHM 
Specificity 0.75 0.85 0.71 
Sensitivity 0.77 0.89 0.69 
Accuracy 0.76 0.87 0.70 

 
5. Conclusions  
 
In this paper, we present HIGAS, a hybrid intelligent system that deals with diagnosis and 
treatment of blood gas (acid-base) disturbances and disorders. The diagnosis process was 
modeled based on expert’s knowledge and the existing literature. Fuzzy variables were 
specified based again on expert’s knowledge. A characteristic of the system is the 
synergism between an EA module and a fuzzy rule base. The DE algorithm is used to tune 
the membership functions of the fuzzy values of the fuzzy variables. This improves the 
accuracy of the system. Medium scale experimental results showed that HIGAS did quite 
better than non-experts and other systems, but worse than the expert.  

There are two directions that the system can be further improved. First, concerning its 
performance, a more drastic way of tuning could be applied. Instead of tuning the limits of 
the membership functions, we could also change the number of fuzzy values for some or 
all of the fuzzy variables, using e.g. a machine learning technique. Second, it could be 
enhanced with an explanation facility or/and other modules to be used as an educational 
system for non-experts. 
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