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Abstract. In this paper, we make a first effort to define requirements for
knowledge representation (KR) in an ITS. The requirements concern all stages
of an ITS’s life cycle (construction, operation and maintenance), all types of
users (experts, engineers, learners) and all its modules (domain knowledge, user
model, pedagogical model). We also briefly present and compare various KR
formalisms used (or that could be used) in ITSs as far as the specified KR
requirements are concerned. It appears that various hybrid approaches to
knowledge representation can satisfy the requirements in a greater degree than
that of single representations. Another finding is that there is not a hybrid
formalism that can satisfy the requirements of all of the modules of an ITS, but
each one individually. So, a multi-paradigm representation environment could
provide a solution to requirements satisfaction.

1   Introduction

Intelligent Tutoring Systems (ITSs), either Web-based or not, form an advanced
generation of Computer Aided Instruction (CAI) systems. The key feature of ITSs is
their ability to provide a user-adapted presentation of the teaching material. This is
mainly accomplished by using Artificial Intelligence (AI) techniques.

A crucial aspect in the development of an ITS is how related knowledge is
represented and how reasoning for problem solving is accomplished. Various single
knowledge representation (KR) schemes have been used in ITSs such as, symbolic
rules [10], fuzzy logic [7], Bayesian networks [9], case-based reasoning [3]. Also,
hybrid representations such as, neuro-symbolic [5], [8] and neuro-fuzzy [6], have
been recently used. Hybrid approaches integrate two or more single formalisms and
are an emerging type of knowledge representation in ITSs in an effort to enhance the
representational and reasoning capabilities of them.

An aspect that has not received much attention yet is defining requirements for
knowledge representation in ITSs. The definition of such requirements is important,
since it can assist in the selection of the KR formalism(s) to be employed by an ITS.
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It is desirable that a knowledge representation formalism satisfy most, if not all, of
them.

In this paper, we present a first effort to specify a number of requirements that a
KR&R formalism, which is going to be used in an ITS, should meet in order to be
adequate. The requirements refer to all stages of an ITS’s life cycle (construction,
operation and maintenance). They are also based on all types of users involved in
those phases (experts, knowledge engineers, learners) as well as on the three basic
modules of an ITS (domain knowledge, user model and pedagogical model). Based
on them and a comparison of various KR formalisms, we argue that hybrid
formalisms satisfy those requirements in a larger degree than single formalisms,
because hybrid formalisms exhibit significant improvements compared to their
component formalisms. Our final argument is that only a multi-paradigm
environment would be adequate for the development of an ITS.

The paper is organized as follows. Section 2 specifies the KR requirements.
Section 3 presents a number of KR formalisms and how they satisfy the requirements.
Section 4 makes a comparison of the KR formalisms and, finally, Section 5
concludes.

2   KR Requirements for ITSs

Like other knowledge-based systems, we distinguish three main phases in the life-
cycle of an ITS, the construction phase, the operation phase and the maintenance
phase. The main difference is that an ITS requires a great deal of feedback with the
users and iteration between phases. Three types of users are involved in those phases:
domain experts, knowledge engineers (both mainly involved in the construction and
maintenance phases) and learners (mainly involved in the operation phase). Each
type of user has different requirements from the KR formalism(s) to be used.

On the other hand, the system itself imposes a number of requirements to the KR
formalism. An ITS consists of three main modules: (a) the domain knowledge, which
contains the teaching content and information about the subject to be taught, (b) the
user model, which records information concerning the user, and (c) the pedagogical
model, which encompasses knowledge regarding various pedagogical decisions. Each
component imposes different KR requirements.

2.1   Users Requirements

2.1.1   Domain Expert
The domain expert provides knowledge concerning the application domain. He/she is
a person that has worked in the application field for an ample time period and knows
in-depth the possible problems, the way of dealing with them as well as various
practices obtained through his/her experience. In ITSs, the domain experts are mainly
the tutors. Tutors are interested in testing teaching theories in practice to demonstrate
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their usability. They consider that the effectiveness of the theories in assisting
students to learn the teaching subject is of extreme importance. Tutors are highly
involved in the construction and maintenance stages. However, in most cases, their
relation to AI is rather superficial. Sometimes even their experience in computers is
low. This may potentially make them restrained in their interaction with the
knowledge engineer. Furthermore, the teaching theories they want to incorporate
within the system can be rather difficult to express.

So, it is evident that one main requirement that tutors impose on the knowledge
representation formalism is naturalness of representation. Naturalness facilitates
interaction with the knowledge engineer and helps the tutor in overcoming his/her
possible restraints with AI and computers in general. In addition, it assists the tutor in
proposing updates to the existing knowledge. The more natural the knowledge
representation formalism, the better understanding of the existing knowledge and
communication with the knowledge engineer.

Also, checking knowledge during the knowledge acquisition process is a tedious
task. Capability of providing explanations is quite helpful for the expert. So, this is
another requirement. On the other hand, if the knowledge base can be easily updated,
then existing items of the acquired knowledge can be easily removed or updated and
new items can be easily inserted. This demands ease of update.

2.1.2   Knowledge Engineer
The knowledge engineer manages the development of the ITS and directs its various
phases. The main tasks of the knowledge engineer are to select the implementation
tools, to acquire knowledge from the domain expert and/or other knowledge sources
and to effectively represent the acquired knowledge. He/she is the one who decides
on how expert knowledge is to be represented. He/she chooses or designs the
knowledge representation formalism to be employed. Finally, he/she is who maintains
the produced knowledge base.

Obviously, naturalness is again a basic requirement. The more natural the KR
formalism, the easier it will be for the knowledge engineer to translate expert
knowledge. Furthermore, tutors, during construction, may frequently change part
(small or big) of the knowledge imparted to the knowledge engineer. Also, even if the
system's operation is satisfactory, changes and updates of the incorporated expert
knowledge may be required.

Additionally, the KR formalism should facilitate the knowledge acquisition
process. This can be achieved if the KR formalism allows acquiring knowledge from
alternative (to experts) sources, such as databases of empirical data or past cases, in
an automated or semi-automated way. In this way, more existing knowledge sources
can be exploited and the knowledge acquisition process will not be hindered by the
unavailability of a type of source (e.g. experts).  So, ease of knowledge acquisition is
another requirement.

Usually, in developing knowledge-based systems, a prototype is constructed before
the final system. Testing the prototype can call for arduous efforts. As far as the KR
formalism is concerned, two important factors are the inference engine performance
and the capability of providing explanations. If the inference engine associated with
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the KR formalism is efficient, the time spent by the knowledge engineer is reduced.
Also, the possibility of an explanation mechanism associated with the KR formalism
is important, because explanations justifying how conclusions were reached can be
produced. This feature can assist in the location of deficiencies in the knowledge
base. Hence, two other requirements are efficient inferences and explanation facility.

2.1.3   End-User
An end-user (learner) is the one who uses the system in its operation stage. He/she
imposes constraints regarding the user-interface and the time performance of the
system. The basic requirement for KR, from the point of view of end-users, concerns
time efficiency. ITSs are highly interactive knowledge-based systems requiring time-
efficient responses to the users' actions. The decisions an ITS makes during a training
session are based on the conclusions reached by the inference engine associated with
the knowledge representation formalism. The faster the conclusions can be reached,
the faster will the system interact with the user. Therefore, the time performance of an
ITS significantly depends on the time-efficiency of the inference engine. In case of
Web-based ITSs, time performance is even more crucial since the Web imposes
additional time constraints. The server hosting the ITS may be accessed by a
significant number of users. Some of them may even possess a low communication
bandwidth. The server must respond as fast as possible. Besides efficiency, the
inference engine should also be able to reach conclusions from partially known
inputs. It is very common that, during a learning session, certain parameters may be
unknown. However, the system should be able to make inferences and reach
conclusion, no matter whether all or some of the inputs are known.

2.2   System Requirements

2.2.1   Domain Knowledge
The domain knowledge module contains knowledge regarding the subject to be
taught as well as the actual teaching content. It usually consists of two parts: (a)
knowledge concepts and (b) course units. Knowledge concepts refer to the basic
entities/concepts that constitute the subject to be taught. Furthermore, various
concepts are related among them, e.g. by the prerequisite relation, specialization
relation etc. Finally, they are associated with course units. Course units constitute the
teaching content.

Usually, concepts are organized in a type of structure. So, it is evident that a
requirement that comes out of domain knowledge is the capability of the KR
formalism to be able to naturally represent structural and relational knowledge.

2.2.2   User Model
The user model records information about the learner’s knowledge state and traits.
This information is vital for the system to be able to adapt to the user's needs. The
process of inferring a user model from observable behavior is called diagnosis,
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because it is much like the medical task of inferring a hidden physiological state from
observable signs. There are many possible user characteristics that can be recorded in
the user model. One of them is the knowledge that he/she has learned. In this case,
diagnosis refers to evaluation of learner’s knowledge level. Other characteristics may
be ‘learning ability’ and  ‘concentration’. Diagnosis in those cases means estimation
of the learning ability and the concentration of the learner, based on his/her behavior
while interacting with the system. Measurement and interpretation of such user
behavior is quite uncertain.

There is not a clear process for evaluating learner’s characteristics. Also, there is
no a clear-cut between various levels (values) of the characteristics (e.g. between
‘low’ and ‘medium’ concentration). It is quite clear that a representation and
reasoning formalism for the user model should be able to deal with uncertain and
vague knowledge. Also, heuristic (rule of thumb) knowledge is required to make
evaluations.

Table 1. Users Requirements

USERS REQUIREMENTS
Expert Engineer Learner

• naturalness
• ease of update

• naturalness
• ease of update
• multi-source knowledge
     acquisition
• explanation facility

• efficient inferences
• partial input inferences

Table 2. System Requirements

SYSTEM REQUIREMENTS
Domain Knowledge User Model Pedagogical Model

• structural knowledge
• relational knowledge

• uncertain knowledge
• heuristic knowledge

• heuristic knowledge

2.2.3   Pedagogical Model
The pedagogical model represents the teaching process. It provides the knowledge
infrastructure in order to tailor the presentation of teaching the content according to
the information recorded in the user model. The pedagogical model of a ‘classical’
ITS mainly performs the following tasks: (a) course planning (or knowledge
sequencing), (b) teaching method selection and (c) learning content selection. The
main task in (a) is planning, that is selecting and appropriately ordering the concepts
to be taught. The main task involved in (b) and (c) is also selection, e.g. how a
teaching method is selected based on the learner’s state and the learning goal. This is
a reasoning process whose resulting conclusion depends on the logical combinations
of the values of the user model characteristics, which reminds of a rule-type of
knowledge or generally of heuristic knowledge. The above analysis of the
requirements of knowledge representation for an ITS is depicted in Tables 1 and 2.
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3   Knowledge Representation Formalisms

In this section, we investigate to what extent various well-known knowledge
representation formalisms satisfy the requirements imposed by the developers, the
users and the components of an ITS. We distinguish between single and hybrid KR
formalisms.

3.1   Single Formalisms

Semantic nets and their descendants (frames or schemata) represent knowledge in the
form of a graph (or a hierarchy). Nodes in the graph represent concepts and edges
represent relations between concepts. Nodes in a hierarchy also represent concepts,
but they have internal structure describing concepts via sets of attributes. They are
very natural and well suited for representing structural and relational knowledge.
They can also make efficient inferences for small to medium graphs (hierarchies).
However, it is difficult to represent heuristic knowledge, uncertain knowledge and
make inferences from partial inputs. Also explanations knowledge updates are
difficult.

Symbolic rules (of prepositional type) represent knowledge in the form of if-then
rules. They satisfy a number of the requirements. Symbolic rules are natural since one
can easily comprehend the encompassed knowledge and follow the inference steps.
Due to their modularity, updates such as removing existing rules or inserting new
rules are easy to make. Explanations of conclusions are straightforward and of
various types. Heuristic knowledge representation is feasible and procedural
knowledge can be represented in their conclusions too. The inference process may be
not very efficient, when there is a large number of rules and multiple paths are to be
followed. Knowledge acquisition is one of their major drawbacks. Also, conclusions
cannot be reached if some of the inputs are unknown. Finally, they cannot represent
uncertain knowledge and are not suitable for representing structural and relational
knowledge.

Fuzzy logic is used to represent imprecise and fuzzy terms. Sets of fuzzy rules are
used to infer conclusions based on input data. Fuzzy rules outperform symbolic rules
and other formalisms in representing uncertainty. However, fuzzy rules are not as
natural as symbolic rules, because the concepts contained in them are associated with
membership functions. Furthermore, for the same reason, compared to symbolic
rules, they have great difficulties in making updates, providing explanations and
acquiring knowledge (e.g. for specifying membership functions). Inference is more
complicated and less natural than symbolic rule-based reasoning, but its overall
performance is not worse due, because a fuzzy rule can replace more than one
symbolic rule. Explanations are feasible, but not all reasoning steps can be explained.
Finally, fuzzy rules are much like symbolic rules as to structural, heuristic and
relational knowledge as well as the ability to perform partial input inferences.

Case-based representations store a large set of previous cases with their solutions
and use them whenever a similar new case has to be dealt with. Case-based
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representation satisfies several requirements. Cases are usually easy to obtain in most
domains and unlike other formalisms case acquisition can also take place during the
system’s operation further enhancing the knowledge base. Cases are natural since
their knowledge is quite comprehensible by humans. Explanations cannot be easily
provided in most situations, due to the complicated numeric similarity functions.
Conclusions can be reached even if some of the inputs are not known, through
similarity to stored cases. Updates can be made easier compared to other formalisms,
since no changes need to be made in preexisting knowledge. However, inference
efficiency is not always the desirable when the case library becomes very large.
Finally, cases are not suitable for representing structural, uncertain and heuristic
knowledge.

Neural networks represent a totally different approach to AI, known as
connectionism. Neural networks can easily obtain knowledge from training examples,
which are usually available in abundance for most application domains. Neural
networks are very efficient in producing conclusions and can reach conclusions based
on partially known inputs due to their generalization ability. On the other hand, neural
networks lack naturalness. The encompassed knowledge is in most cases
incomprehensible and explanations for the reached conclusions cannot be provided. It
is also difficult to make updates to specific parts of the network. The neural network
is not decomposable and any changes affect the whole network. Neural networks do
not possess inherent mechanisms for representing structural, relational and uncertain
knowledge. Heuristic knowledge can be represented to some degree since it can be
implicitly incorporated into a trained neural network.

Belief networks (or probabilistic nets) are graphs, where nodes represent statistical
concepts and links represent mainly causal relations between them. Each link is
assigned a probability, which represents how certain is that the concept where the link
departs from causes (lead to) the concept where the link arrives at. Belief nets are
good at representing causal relations between concepts. Also, they can represent
heuristic knowledge to some extend. Furthermore, they can represent uncertain
knowledge through the probabilities and make relatively efficient inferences (via
computations of probabilities propagation). However, estimation of probabilities is a
difficult task, which gives great problems to the knowledge acquisition process. For
the same reason, it is difficult to make updates. Also, explanations are difficult to
produce, since the inference steps cannot be easily followed by humans. Furthermore,
given that belief networks representation and reasoning are based on numerical
computation, their naturalness is reduced.

3.2   Hybrid Formalisms

Hybrid formalisms are integrations of two or more single KR formalisms. In this
section we focus on approaches belonging to the most popular categories of hybrid
formalisms that is, symbolic-symbolic, neuro-symbolic, neuro-fuzzy and integrations
of rule-based and case-based formalisms.
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Connectionist expert systems [1] are neuro-symbolic integrations combining neural
networks with expert systems. The knowledge base is a network whose nodes
correspond to domain concepts. They also consist of an inference engine and an
explanation mechanism. Compared to neural networks, they offer more natural
representation and can provide some type of explanation. Naturalness is enhanced due
to the fact that most of the nodes correspond to domain concepts. However, the
additional (unknown) nodes inserted to deal with inseparability affect negatively the
naturalness of the knowledge base and the provided explanations. In all other aspects,
connectionist expert systems behave like neural networks.

There are various ways to integrate neural networks and fuzzy logic. We are
interested in integrations that the two component representations are
indistinguishable. Such integrations are the fuzzy neural networks and the hybrid
neuro-fuzzy representations. Fuzzy neural networks are fuzzified neural networks,
that is they retain the basic properties and architectures of neural networks and
"fuzzify" some of their elements (i.e., input values, weights, activations, outputs). In a
hybrid neuro-fuzzy system both fuzzy techniques and neural networks play a key
role. Each does its own job in serving different functions in the system (usually
knowledge is contained and applied by the connectionist part, but is described and
presented by the fuzzy model). Hybrid neuro-fuzzy systems seem to satisfy KR
requirements in a greater degree than fuzzy neural networks. They combine more and
in a more satisfactory way the benefits of their component representations.

Another trend to hybrid knowledge representation are the integrations of rule-
based with case-based reasoning [2]. We refer here to the approaches where rules
dominate. Rules correspond to general knowledge, whereas cases correspond to
specific knowledge. These hybrid approaches effectively combine the best features of
rules and cases. Naturalness of the underlying components is retained. Compared to
‘pure’ case-based reasoning, their key advantage is the improvement in the
performance of the inference engine and the ability to represent heuristic and
relational knowledge. Furthermore, the synergism of rules and cases can cover up
deficiencies in the rule base (improved knowledge acquisition) and also enable partial
input inferences. The existence of rules in these hybrid formalisms makes updates
more difficult than ‘pure’ case-based representations. Also explanations can be
provided but not as easily as in ‘pure’ rule-based reasoning because inference
becomes more complicated, since similarity functions are still present.

Description Logics (DLs) can be also considered as hybrid KR formalisms, since
they combine aspects from frames, semantic nets and logic. They consist of two main
components, the Tbox and the Abox. Tbox contains definitions of concepts and roles
(i.e. their attributes), which are called terminological knowledge, whereas ABox
contains logical assertions about concepts and roles, which are called assertional
knowledge. DLs offer clear semantics and sound inferences. They are usually used
for building and maintaining ontologies as well as for classification tasks related to
ontologies. Also, DLs can be built on existing Semantic Web standards (XML, RDF,
RDFS). So, they are quite suitable for representing structural and relational
knowledge. Also, since they are based on logic, they can represent heuristic
knowledge. Furthermore, their Tboxes can be formally updated. Their representation
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is natural, but not as much as that of symbolic rules. Inferences in DLs may have
efficiency problems. Explanations cannot be easily provided.

Neurules are a type of hybrid rules integrating symbolic rules with
neurocomputing, introduced by us [4]. The most attractive features of neurules are
that they improve the performance of symbolic rules and simultaneously retain their
modularity and, in a large degree, their naturalness, in contrast to other hybrid
approaches. So, neurules offer a number of benefits for knowledge representation in
an ITS. Apart from the above, updating a neurule base (add to or remove neurules
from) is easy, due to the modularity of neurules [5]. The explanation mechanism
produces natural explanations. Neurule-based inference is more efficient than
symbolic rule-based reasoning and inference in other hybrid neuro-symbolic
approaches. Neurules can be constructed either from symbolic rules or from empirical
data enabling the exploitation of various knowledge sources [5]. In contrast to
symbolic rules, neurule-based reasoning can derive conclusions from partially known
inputs, due to its connectionist part.

Table 3. Comparison of KR formalisms
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N
at

ur
al

ne
ss

E
as

e 
of

 U
pd

at
e

E
ff

ic
ie

nt
In

fe
re

nc
e

E
xp

la
na

ti
on

s

K
no

w
le

dg
e

A
cq

ui
si

ti
on

P
ar

ti
al

 in
pu

t
in

fe
re

nc
es

St
ru

ct
ur

al
kn

ow
le

dg
e

R
el

at
io

na
l

kn
ow

le
dg

e

U
nc

er
ta

in
kn

ow
le

dg
e

H
eu

ri
st

ic
kn

ow
le

dg
e

Semantic nets/frames √+ √- √+ - √ - √+ √+ - -
Symbolic rules √+

√
+

√ √+ √- - - √- - √+

Fuzzy logic √- - √ - √- - - √- √+ √+
Case-based representations √+

√
+

√ √ √+ √ - √ - -

Belief networks √- - √+ - √- - √ √+ √+ √-
Neural networks - - √+ - √+ √+ - √- - √-

Connectionist expert systems √- √- √+ √- √+ √+ - √- - √-
Neuro-fuzzy representations √- - √ - √ √- - √- √+ √
Cases and rules √+ √ √ √ √ √ - √ - √
Description logics √ √- √- √- √ - √+ √+ - √
Neurules √ √ √+ √+ √+ √+ - √- - √+

4   Discussion

Table 3 compares the KR formalisms discussed in Section 3, as far as satisfaction of
KR requirements for ITSs are concerned. Symbol ‘-‘ means ‘unsatisfactory’, ‘√-’
average, ‘√’ ‘good’ and ‘√+’ ‘very good’. A conclusion that can be drawn from the
table is that none of the single or hybrid formalisms satisfies all the requirements for
an ITS. However, some of them satisfy the requirements of the different modules of
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an ITS. Hybrid formalisms demonstrate improvements compared to most or all of
their component formalisms. So, a solution to the representational problem of an ITS
could be the use of different representation formalisms (single or hybrid) for the
implementation for different ITS modules (i.e. domain knowledge, user model,
pedagogical model). Then, the idea of a multi-paradigm development environment
seems to be interesting. The next problem, though, is which KR paradigms should be
included in such an environment.

5   Conclusions

In this paper, we make a first effort to define requirements for KR in an ITS. The
requirements concern all stages of an ITS’s life cycle (construction, operation and
maintenance), all types of users (experts, engineers, kearners) and all its modules
(domain knowledge, user model, pedagogical model). According to our knowledge,
such requirements have not been defined yet in the ITS literature. However, we
consider them of great importance as they can assist in choosing the KR formalisms
for representing knowledge in the components of an ITS.

From our analysis, it appears that various hybrid approaches to knowledge
representation can satisfy the requirements in a greater degree than that of single
representations. So, we believe that use of hybrid KR approaches in ITSs can become
a popular research trend, although, till now, only a few efforts exist. Another finding
is that there is not a hybrid formalism that can satisfy the requirements of all of the
modules of an ITS. So, a multi-paradigm representation could provide a solution.

We feel that our research needs to be further completed by getting more detailed
and more specific to ITSs nature. What is further needed is a more in-depth analysis
of the three modules of an ITS. Also, a more fine-grained comparison of the KR
formalisms may be required. These are the main concerns of our future work.
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