
A Web-Based Education System for Predicate Logic

Ioannis Hatzilygeroudis, Christos Giannoulis, Constantinos Koutsojannis

University of Patras, Dept of Computer Engin. & Informatics

26500 Patras, Hellas (Greece)

&

Research Academic Computer Technology Institute

P.O. Box 1122, Patras, Hellas (Greece)

{ihatz/giannoul/ckoutsog}@ceid.upatras.gr

Abstract

In this paper, we present a web-based system teaching
predicate logic as a knowledge representation and

reasoning language. The system is adaptable in the sense

that it allows the students to choose their own way of
using it. Students can evaluate themselves, by selecting the

complexity and the difficulty level of the exercises.
Another interesting point of the system is its open

exercising facility, by which the students can try any

conversion of a FOPC formula to Clause Form. This is
achieved by calling LISP code, which is part of an

automated theorem prover. Incorporation of LISP code

into the hypermedia application was an interesting
implementation problem. An initial evaluation of the

system showed encouraging results as far as its usability

and learning are concerned.

1. Introduction

Knowledge Representation & Reasoning (KR&R) is a

fundamental topic of Artificial Intelligence (AI). A basic

KR language is First-Order Predicate Calculus (FOPC),

the main representative of logic-based representation

languages, which is part of almost any introductory AI

course. To make automated inferences, Clause Form (CF),

a special form of FOPC, is used in conjunction with

Resolution Principle (RP), a very powerful rule of

inference. Students find difficulties in various aspects of

using FOPC as a knowledge representation and reasoning

language. Two of them are (a) converting natural

language (NL) sentences into FOPC formulas and (b)

converting complex FOPC formulas into CF.

There are several systems, like Plato [1], Logic

Toolbox [2] etc (see e.g. in http://www.cs.otago.ac.nz/

staffpriv/hans/logiccourseware.html#list for an account)

that are characterized as logic educational software.

However, most of them have been developed at

Philosophy Departments and deal with how to construct

formal proofs mainly using natural deduction rules,

restricting themselves to propositional logic (PL). PL is

weaker than FOPC: there is no ability to use variables. An

interesting and advanced case is Logic-ITA [3], which is

an intelligent teaching assistant system for Logic. It also

deals with prepositional logic in the same sense as above,

but it is addressed to both students and teachers and uses

intelligent techniques to automatically adapt to their

needs. So, those systems are not concerned with how to

use predicate logic as a KR&R language.

To help the students and the tutor in our Department,

we constructed a web-based system to assist learning and

teaching logic as a KR & R language (course 451: AI).

The system focuses on the above two difficulties of

students. A student can specify the level of difficulty and

the level of complexity of the exercises to test him/herself

at his/her own pace. Also, the system offers some

openness as far as FOPC to CF conversion is concerned.

The user can try any FOPC formula and test each

conversion step by him/herself. So, the system can be

characterized as adaptable to the student needs.

2. System architecture and functionalities

The architecture of the system is depicted in Figure 1.

It comprises three main units: the Hypermedia Application
(HA), the LISP Application (LA) and the Database (DB).

Students are the users of the system. A student has to

identify him/herself before logging in the system and can

access HA through a Web-browser. Then the Web Server

(in fact IIS) is responsible for the interaction between the

user and the system.

HA is actually the tutoring part of the system. A

student is able to study theory about various concepts and

procedures related to FOPC as a KR&R language, look at

a number of solved examples and try some exercises, to

test his/her knowledge. All about examples and exercises

are stored in the DB. So, there is an interaction between

the HA and the DB during a learning session. In some

cases, students can try their own examples or exercises. In

those cases, LA is called to compute the results, which are

then displayed back to the student, through the HA.

Proceedings of the IEEE International Conference on Advanced Learning Technologies (ICALT’04)

0-7695-2181-9/04 $20.00 © 2004 IEEE

Fig. 1. System Architecture

3. The Hypermedia Application

3.1 Content and Its Presentation

The Hypermedia Application (HA) presents the

learning content to the students. The interface of the HA

consists of two areas: navigation area and content area,

and two bars: info bar and tool bar (see Fig. 2). The info

bar, at the top of the screen, displays the local time and

date, the time the user has been connected to the system so

far and the number of currently connected users. The tool

bar, at the bottom of the screen, contains a number of

links: logout, password change, initial page, help page,

technical support page and communication (with the

tutor). The content area is the main area, where the

learning content is presented, and resides at the center and

the right part of the screen.

The navigation area, at the left side of the screen,

displays the contents the students can deal with, in the

form of a pop-down tree/hierarchy (see Fig. 2). Part of the

tree is presented in Fig. 3.

Fig. 2. Hypermedia Application User Interface

Topics lower down in the hierarchy are less complex

than those higher up in it. The leaves of the tree (in

rectangles) correspond to simple topics. Each simple topic

corresponds to a topic page, which is an ASP page. That

is, only content about simple topics is displayable. The

topic page of the selected simple topic is currently

presented in the content area. Each topic page deals with a

number of concepts. More specifically, it contains an

ordered list of concepts. Each concept is linked to the

corresponding concept page.

The learning method (implicitly followed) is based on

the traditional theory-examples-exercises paradigm

(although the user can follow his/her own method). That

is, for each topic, the theory is first presented. Then, some

Hypermedia

Application

LISP

Application
Database

Web Server

(IIS)

Web Browser

Student

Navigation

area

Content

area

Info Bar

Tool Bar

NextPreviousStart

Back

Proceedings of the IEEE International Conference on Advanced Learning Technologies (ICALT’04)

0-7695-2181-9/04 $20.00 © 2004 IEEE

examples are given. Finally, the student is called to solve

some problems or make some exercises. Theory consists

in presenting a number of concepts. Those concepts are

presented in a simple-to-complex way. That is, the simple

concepts are presented first and the complex concepts

(that require the knowledge of one or more simpler

concepts) are presented afterwards. This is depicted in the

ordered list.

Fig. 3. Part of the Content Navigation Tree

Furthermore, the student can review a previous

concept at any time. The student is also not forced to

follow our way of teaching, but can make his/her own

choices for studying. For example, a student can jump to

complex concepts without taking a look at simpler ones.

In many concept pages there are links to other concepts

that are prerequisite to the concept of the page. So, the

student, if needed, can recall the theory about the

prerequisite concepts. After having looked at the recalled

theory, the student can return back to where was before

and go on with his/her studying.

3.2 Self-Evaluation Facility

A student is able to test what has learnt so far, by

taking some exercises. The student has the opportunity to

set his/her requirements for each exercise. Those

requirements are passed as a query to the DB and the

system responses with an appropriate exercise (retrieved

from the DB). The student can try to solve the exercise by

him/herself and then check the answer. This is the way a

student can do a self-evaluation on NL to FOPC

conversion and on FOPC to CF conversion.

In the first case, the student selects a difficulty level (1

to 5) and specifies the complexity level of the exercise.

The complexity depends on how many of the vocabulary

types: constant, variable, function and quantifiers, are

present in the resulted FOPC formula. The student has to

select at least one of them. Then the system picks up a

clause in NL and asks the student to convert it into FOPC.

The student works with it and when is ready checks

whether his/her answer is similar to any of four (4)

possible answers given by the system. If the student

checks a wrong one, an explanation is provided why it is

wrong. Then the correct answer appears.

In the second case (FOPC to CF), the student selects a

difficulty level (from 1 to 5) and the system responds by

returning an appropriate FOPC clause, to be transformed

into CF. Transformation includes six steps: implier

elimination, negation reduction, variable renaming and

transformation in PNF, Skolemisation and universal

quantifiers removal, transformation into CNF, clause

extraction and variable renaming.

Fig. 4. Open exercising facility interface

Therefore, the answer is constructed in a stepwise

manner. In every step the system gives the student the

right answer. So, the student is able to check at every step

if has made some mistake. If he/she has, is able to go on

with the next step, using the correct answer given by the

system. In each step, before or after its execution, the

student can follow a link to the theory related to that step.

So, the student can recall that theory as a help either to

construct his/her answer to the step or to verify the answer

given by the system. After completing the whole function,

that is all steps, the final result, the correct clause in CF,

appears.

FOPC

Syntax

Clause Form

NL to FOPC

Conversion

Formulas

Vocabulary

Conversion

Definitions

Self-evaluation

Open-exercising

Introduction

Proceedings of the IEEE International Conference on Advanced Learning Technologies (ICALT’04)

0-7695-2181-9/04 $20.00 © 2004 IEEE

3.3 Open Exercising Facility

While self-evaluation facility allows a student to

evaluate him/herself in a semi-structured way, open

exercising facility allows him to do it in a free way. A

student can try to convert any FOPC formula to its CF, in

a stepwise manner. So, on the one hand, a student can

check his/her ability in converting any formula and, on the

other, he/she can practise by trying as many formulas as

he/she wishes.

This automated conversion is achieved by calling a

java applet, which runs LA code (see next section). The

interface of the facility includes three areas (see Fig. 4).

The upper area is used for FOPC formula input. The lower

area is used to display each step’s result. Finally, the mid

area specifies the step to be executed next.

4. Implementation Issues

According to [4], architectures of web-based tutoring

systems can be distinguished in three categories, based on

the location where the tutoring functions are performed:

the centralized, the replicated and the distributed

architecture. In the centralized architecture, all tutoring

functions are performed on the server machine, whereas in

the replicated one on the client’s machine. In the

distributed architecture, tutoring functions are distributed

between the client and the server. The architecture of our

system belongs to the distributed one. Our application

server consists of HA and DB and executes its functions

on the server. LA is implemented as a Java applet, which

is downloaded and executed on the client’s machine.

All web pages of the HA have been implemented in

ASP. By doing this, we make sure that only authenticated

users would have access to the system. Also, ASP

provides some features that allow communication with a

database. Hence, ASP is a good tool, since the HA needs

to interact with the DB. The DB has been implemented in

Microsoft Access.

A very interesting part of the implementation was that

of LA and its connection to the HA. LA is actually part of

an Automated Theorem Proving (ATP) system, called

ACT-P, implemented in Common LISP [5]. The problem

was how to call a LISP program (functions) from within a

Web-based system. To this end, we found a LISP

interpreter implemented (by Josef Jelinek) in Java, called

G-LISP. G-LISP environment is called LISP Interpreter

Java Applet (LIJA) [6]. It was not what we exactly

needed, but it was a very good tool, since it could allow us

to use LISP on the Web and its source code was available.

The first thing we realized was that not all Common

LISP functions were implemented in G-LISP. So, first, we

enhanced it with a number of functions. Another problem

we faced was to be able to automatically load LA

functions, those related to the FOPC to CF conversion.

LIJA has a feature that allows to load LISP functions from

a file, but requires that the LISP functions are on the client

side. This problem has been solved by constructing a C

program, which reads LISP functions from a file and

returns a file with a Java method. This method is then

used in the Java Applet. By doing this, we can load as

many functions as needed. The C program runs on the

server side and, after the methods are placed in the applet,

the applet is compiled.

5. Initial Evaluation

The first version of the system was released in

December 2003 and used by the class of the Artificial

Intelligence course, in our Department, which consisted of

thirty senior computer engineering students. The students

had been taught about FOPC as a KR&R language during

the course lectures. They were instructed to use the system

as follows: login at least three times and make at least (a)

three exercises from NL to FOPC conversion, (b) two

exercises from FOPC to CF conversion using the self-

evaluation facility and (c) two exercises from FOPC to CF

conversion using the open exercising facility. Then, they

were asked to fill in a questionnaire (similar to that used

for the system in [4]), including questions for evaluating

usability and learning. The questionnaire included ten

questions. Question 1 was of multiple choice and

concerned the time needed for a student to adapt to the

system. Question 3 was a yes-no (actually agree-disagree)

type question and concerned a comparison of using the

system and attending a tutorial session. Questions 2 and 4-

6 were based on Likert scale (1: not at all, 5: very much)

(see Table 1), but they included a ‘please explain’ request

too. Finally, questions 7-10 were of open type and

concerned strong and weak points or problems faced in

using the system.

Twenty eight students filled in the questionnaire. Their

answers showed that the students in general enjoyed

learning with the system (Q4, Table 1). Most of them

(82%) reported that they needed less than five minutes to

start using the system (Q1). Also, they found that the user

interface is easy to use (Q6, Table 1).

On the other hand, the students agreed that the system

helped them in learning about Logic. The average score in

the relevant question (Q2, Table1) was 3.9. Also, due to

this fact (as extracted from the ‘please explain’ section of

the question), they suggest the system to the next year

students with an average score 4.4 (Q5, Table 1). There

was no a clear result on whether they prefer an hour using

the system from an hour tutorial session (Q3). 36% were

in favor of the system, 39% in favor of the tutorial session

and (surprisingly?) 25% introduced by themselves and

checked a third choice saying that both are equally useful

for learning.

The open questions revealed that the self-evaluation

facility was more usable and useful than the open

exercising facility, which needs technical improvements.

Proceedings of the IEEE International Conference on Advanced Learning Technologies (ICALT’04)

0-7695-2181-9/04 $20.00 © 2004 IEEE

However, they suggested that more examples/exercises

should be added, especially related to the NL to FOPC

conversion, to cover more cases.

ANSWERS (%)

Q QUESTIONS
1 2 3 4 5

2

How much did the

system helped you to

learn Logic?

0 3 29 39 29

4
Did you enjoy learning

with the system?
0 3 21 61 11

5

Will you suggest the

system to next year

students?

0 0 14 32 54

6
Did you find the

interface easy to use?
0 0 14 61 21

Table 1. Questionnaire Results (partial)

We also compared the exam results of the 2002-3

class, who did not use the system, and the 2003-4, who

used it. The comparison is based on the questions of the

exam paper related to the system topics (see Table 2). It is

clear that there was an improvement to the class average

mark as far as FOPC to CF conversion question is

concerned, but a reduction as far as NL to FOPC

conversion question is concerned. The first result is quite

encouraging, because, apart from the improvement to the

average mark, the given FOPC formula was more

complex than that of previous year. This is also the reason

for the second result, the reduction. The NL sentences

were more complex than the ones in the previous year

exam. That result is also consistent with one of the open

questions findings: more examples/exercises related to NL

to FOPC conversion should be added in the database,

which is quite easy to do.

Question Feb-2003 exam Feb-2004 exam

NL-to-FOPC

(15 marks)
10.7 7.53

FOPC-to-CF

(15 marks)
13.1 13.5

Table 2. Exam Results

6. Conclusions

Contemporary education may not be based exclusively

on class lectures, given the current capabilities of

technology. Web-based educational systems are a class of

systems suitable for a more personalized learning.

In this paper, we present a web-based education

system to assist students in learning and tutors in teaching

predicate logic as a knowledge representation and

reasoning language.

The system leaves the initiative to the students of how

they will use the system. The main characteristics of the

system are: (a) a student can select on his/her own the

next topic to deal with, (b) a student can be self-evaluated

by specifying the difficulty level and the complexity of

the exercises to try and (c) a student can try any FOPC to

CF conversion through the automated open exercising

facility. They make the system adaptable to student needs.

Recent developments in the area of web-based

educational systems use AI techniques to achieve

automated adaptation to user needs, resulting in adaptive

web-based educational systems (see e.g. [3], [4], [7], [8]).

Automated adaptation may be not always the best solution

in a web-based educational system. However, this is a

challenge and our future efforts are directed to incorporate

intelligence to our system.

7. References

[1] Plato. http://www.utexas.edu/courses/plato/info.html

(accessed February 2004).

[2] Logic Toolbox. http://philosophy.lander.edu/~jsaetti/

Welcome.html (accessed February 2004).

[3] L. Lesta and K. Yacef, “An Intelligent Teaching Assistant

System for Logic”, Proceedings of the ITS-2002, Biarritz,

France (June 2002) 119-128.
[4] A. Mitrovic and K. Hausler, “Porting SQL-Tutor to the

Web”, Proceedings of the ITS-2000 Workshop on Adaptive and

Intelligent Web-based Education Systems, 37-44, 2000.

[5] I. Hatzilygeroudis and H. Reichgelt, “ACT-P: A

Configurable Theorem Prover”, Data & Knowledge Engineering

12 (1994), 277-296.

[6] LIJA. http://cube.misto.cz/lisp/ (accessed February 2004).

[7] K. Kabbasi and M. Virvou, “Using Web Services for

Personalised Web-based Learning”, Educational Technology &

Society, 6(3), 2003, 61-71.

[8] K. A. Papanikolaou, M. Grigoriadou, H. Kornilakis and G.

D. Magoulas, “Personalizing the Interaction in a Web-based

Educational Hypermedia System: the case of INSPIRE”, User-

Modeling and User-Adapted Interaction 13(3), 2003, 213-267.

Proceedings of the IEEE International Conference on Advanced Learning Technologies (ICALT’04)

0-7695-2181-9/04 $20.00 © 2004 IEEE

	footer1:

