
I.P. Vlahavas and C.D. Spyropoulos (Eds.): SETN 2002, LNAI 2308, pp. 30–41, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Multi-inference with Multi-neurules

Ioannis Hatzilygeroudis and Jim Prentzas

University of Patras, School of Engineering
Dept of Computer Engin. & Informatics, 26500 Patras, Hellas (Greece)

&
Computer Technology Institute, P.O. Box 1122, 26110 Patras, Hellas (Greece)

{ihatz, prentzas}@ceid.upatras.gr

Abstract. Neurules are a type of hybrid rules combining a symbolic and a
connectionist representation. There are two disadvantages of neurules. The first
is that the created neurule bases usually contain multiple representations of the
same piece of knowledge. Also, the inference mechanism is rather
connectionism oriented than symbolism oriented, thus reducing naturalness. To
remedy these deficiencies, we introduce an extension to neurules, called multi-
neurules, and an alternative inference process, which is rather symbolism
oriented. Experimental results comparing the two inference processes are also
presented.

1 Introduction

There have been efforts at combining the expert systems approach and the neural
networks (connectionism) one into hybrid systems, in order to exploit their benefits
[1]. In some of them, called embedded systems, a neural network is used in the
inference engine of an expert system. For example, in NEULA [2] a neural network
selects the next rule to fire. Also, LAM [1] uses two neural networks as partial
problem solvers. However, the inference process in those systems, although gains
efficiency, lacks the naturalness of the symbolic component. This is so, because pre-
eminence is given to the connectionist framework.

On the other hand, connectionist expert systems are integrated systems that
represent relationships between concepts, considered as nodes in a neural network.
Weights are set in a way that makes the network infer correctly. The system in [3] is a
popular such system, whose inference engine is called MACIE. Two characteristics of
MACIE are: its ability to reason from partial data and its ability to provide
explanations in the form of if-then rules. However, its inference process lacks
naturalness. Again, this is due to the pure connectionist inference approach.

In a previous work [4], we introduced neurules, a hybrid rule-based representation
scheme integrating symbolic rules with neurocomputing, which gives pre-eminence to
the symbolic component. Thus, neurules give a more natural and efficient way of
representing knowledge and making inferences. However, there are two
disadvantages of neurules, from the symbolic point of view. Neurules are constructed

Multi-inference with Multi-neurules 31

either from symbolic rules or from learning data in the form of training examples. In
case of non-separable sets of training examples, more than one neurule with the same
conditions and the same conclusion, but different significance factors exist in a
neurule base. This creates neurule bases with multiple representations of the same
piece of knowledge [5]. The second disadvantage is that the associated inference
mechanism [6] is rather connectionism oriented, thus reducing naturalness.

To remedy the first deficiency, we introduce here an extension to neurules called
multi-neurules. For the second, we introduce an alternative hybrid inference process,
which is rather symbolism oriented. Experimental results comparing the two inference
processes are presented.

The structure of the paper is as follows. Section 2 presents neurules and Section 3
mainly the inference process introduced here. In Section 4, an example knowledge
base and an example inference are presented. Section 5 presents some experimental
results and finally Section 6 concludes.

2 Neurules

2.1 Simple Neurules

Neurules (: neural rules) are a kind of hybrid rules. Each neurule (Fig. 1a) is
considered as an adaline unit (Fig.1b). The inputs Ci (i=1,...,n) of the unit are the
conditions of the rule. Each condition Ci is assigned a number sfi, called a significance
factor, corresponding to the weight of the corresponding input of the adaline unit.
Moreover, each rule itself is assigned a number sf0, called the bias factor,
corresponding to the bias of the unit.

(a) (b)

Fig. 1. (a) Form of a neurule (b) corresponding adaline unit

Each input takes a value from the following set of discrete values: [1 (true), -1
(false), 0 (unknown)]. The output D, which represents the conclusion of the rule, is
calculated via the formulas:

C1 C2 Cn

. . .
(sf1)

(sf2)
(sfn)

(sf0)

D
(sf0) if C1 (sf1),

 C2 (sf2),

 …

 Cn (sfn)

 then D

32 I. Hatzilygeroudis and J. Prentzas

D = f(a) , ∑
n

i=
ii Csf + = sf

1
0a (1)

where a is the activation value and f(x) the activation function, which is a threshold
function:

1 if a � 0
 f(a) =

-1 otherwise

Hence, the output can take one of two values, ‘-1’ and ‘1’, representing failure and
success of the rule respectively.

2.2 Training Neurules

Each neurule is individually trained via a training set, which contains training
examples in the form [v1 v2 … vn d], where vi, i= 1, …,n are their component values,
corresponding to the n inputs of the neurule, and d is the desired output (‘1’ for
success, ‘-1’ for failure). The learning algorithm employed is the standard least mean
square (LMS) algorithm (see e.g. [3]).

However, there are cases where the LMS algorithm fails to specify the right
significance factors for a number of neurules. That is, the adaline unit of a rule does
not correctly classify some of the training examples. This means that the training
examples correspond to a non-separable (boolean) function. To overcome this
problem, the initial training set is divided into subsets in a way that each subset
contains success examples (i.e. with d=1) which are “close” to each other in some
degree. The closeness between two examples is defined as the number of common
component values. For example, the closeness of [1 0 1 1 1] and [1 1 0 1 1] is ‘2’.
Also, we define as least closeness pair (LCP), a pair of success examples with the
least closeness in a training set. There may be more than one LCP in a training set.

Initially, a LCP in the training set is found and two subsets are created each
containing as its initial element one of the success examples of that pair, called its
pivot. Each of the remaining success examples are distributed between the two subsets
based on their closeness to their pivots. More specifically, each subset contains the
success examples which are closer to its pivot. Then, the failure examples of the
initial set are added to both subsets, to avoid neurule misfiring. After that, two copies
of the initial neurule, one for each subset, are trained. If the factors of a copy
misclassify some of its examples, the corresponding subset is further split into two
other subsets, based on one of its LCPs. This continues, until all examples are
classified. This means that from an initial neurule more than one final neurule may be
produced, which are called sibling neurules (for a more detailed and formal
description see [5]).

Multi-inference with Multi-neurules 33

2.3 Multi-neurules

The existence of sibling neurules creates neurule bases with multiple representations
of the same piece of knowledge, which is their main disadvantage. To remedy this
deficiency, we introduce multi-neurules.

(a) (b)

Fig. 2. (a) Form of a multi-neurule (b) corresponding multi-adaline unit

A multi-neurule of size m has the form presented in Fig. 2a and is considered as a

multi-adaline unit (Fig. 2b), also introduced here. Each m
iCF is called a condition sf-

tuple that consists of m significance factors:

>≡< imii
m

i sfsfsfCF ,...,, 21 .

A multi-adaline unit of size m is a merger of m simple adaline units.
Correspondingly, a multi-neurule of size m is the merger of m simple neurules. So, in
a multi-unit of size m we distinguish m different sets of weights, each corresponding
to the weights of a constituent unit. Similarly, a multi-neurule of size m includes m
different sets of significance factors, called rule sf-sets, each corresponding to the
significance factors of a constituent neurule. Thus, the rule sf-set RFi consists of the
ith significance factors of the sf-tuples:

RFi = (sf1i, sf2i, …, sfni), for i = 1, m

Each RFi is used to compute the activation ai of the corresponding adaline unit.
The output of a multi-unit is determined by the set that produces the maximum

activation value. Hence, a multi-unit is activated as soon as any of its constituent units
gets activated (i.e. any ai � 0). The output D of a multi-adaline unit is calculated via
the formulas:

i

m

i

fD aa, a V
1

)(
=

== , ∑
=

+=
n

j
jijii Csfsf

1
0a (2)

The activation function is the same as in a simple unit.

(mCF0) if C1 (
mCF1),

 C2 (
mCF2),

 …

 Cn (
m

nCF)

 then D

(m
nCF)

C1 C2
Cn

. . .

(mCF1)
(mCF2)

D

(mCF0)

34 I. Hatzilygeroudis and J. Prentzas

Fig. 3. Merging sibling neurules into a multi-neurule

In practice, a multi-neurule is produced by simply merging all sibling neurules
with the same conclusion. For example, neurule NR5, used in the example knowledge
base in Section 4.1, is a multi-neurule produced from merging two sibling neurules of
the old knowledge base (NR5, NR6), as shown in Fig.3. Notice that, because the
conditions in each simple neurule are are sorted, so that |sf1| � |sf2| � … � |sfn|, for
efficiency reasons, this information is also attached to multi-neurules. So, NR5 has
two sf-sets, RF1 = (-1.8, 1.0) and RF2 = (-2.6, 1.8).

2.4 Syntax and Semantics

The general syntax of a neurule, simple or multi, (in a BNF notation, where ‘{}’
denotes zero, one or more occurrences and ‘<>’ denotes non-terminal symbols) is:

<rule>::= (<bias-factors>) if <conditions> then <conclusions>

<bias-factors>::= <bias-factor> {, <bias-factor>}

<conditions>::= <condition> {, <condition>}

<conclusions>::= <conclusion> {, <conclusion>}

<condition>::= <variable> <predicate> <value> (<significance-factors>)

< significance-factors >::= < significance-factor> {, < significance-factor>}

<conclusion>::= <variable> <predicate> <value> .

In the above definition, <variable> denotes a variable as in a variable declaration.
<predicate> denotes a predicate, which is one of {is, isnot, <, >}. <value> denotes a
value. It can be a symbol (e.g. “male”, “night-pain”) or a number (e.g “5”). <bias-
factor> and <significance-factor> are (real) numbers. The significance factor of a
condition represents the significance (weight) of the condition in drawing the
conclusion. A significance factor with a sign opposite to that of the bias factor of its
neurule positively contributes in drawing the conclusion, otherwise negatively.

NR5: (-2.2) if Treatment is Placibin (-1.8),
Treatment is Biramibio (1.0)

 then Treatment is Posiboost

NR6: (-2.2) if Treatment is Biramibio (-2.6),
Treatment is Placibin (1.8)

 then Treatment is Posiboost

NR5: (-2.2, -2.2) if Treatment is Placibin (-1.8, 1.8)
 Treatment is Biramibio (1.0, -2.6)

 then Treatment is Posiboost

Multi-inference with Multi-neurules 35

3 The Hybrid Inference Processes

The inference engine associated with neurules implements the way neurules co-
operate to reach conclusions. It supports two alternative hybrid inference processes.
The one gives pre-eminence to neurocomputing, and is called connectionism-oriented
inference process, whereas the other to symbolic reasoning, and is called symbolism-
oriented inference process. In the symbolism-oriented process, a type of a classical
rule-based reasoning is employed, but evaluation of a rule is based on
neurocomputing measures. In the connectionism-oriented process, the choice of the
next rule to be considered is based on a neurocomputing measure, so the process
jumps from rule to rule, but the rest is symbolic. In this section, we mainly present the
symbolism oriented process.

3.1 Neurules Evaluation

In the following, WM denotes the working memory and NRB the neurule base.
Generally, the output of a simple neurule is computed according to Eq. (1).

However, it is possible to deduce the output of a neurule without knowing the values
of all of its conditions. To achieve this, we define for each simple neurule the known
sum and the remaining sum as follows:

∑
∈

+=−
EC

ii

i

Csfsfsumkn 0 (3)

∑
∈

=−
UC

i

i

sfsumrem ||
(4)

where E is the set of evaluated conditions, U the set of unevaluated conditions and Ci

is the value of condition condi. A condition is evaluated, if its value (‘true’ or ‘false’)
is by some way known. So, known-sum is the weighted sum of the values of the
already known (i.e. evaluated) conditions (inputs) of the corresponding neurule and
rem-sum represents the largest possible weighted sum of the remaining (i.e.
unevaluated) conditions of the neurule. If |kn-sum| > rem-sum for a certain neurule,
then evaluation of its conditions can stop, because its output can be deduced
regardless of the values of the unevaluated conditions. In this case, its output is
guaranteed to be '-1' if kn-sum < 0, or ‘1’, if kn-sum > 0.

In the case of a multi-neurule of size m, we define m different kn-sums and rem-
sums, one for each RFi:

∑
∈

+=−
EC

jjiii

j

Csfsfsumkn 0 , i=1, m (5)

∑
∈

=−
UC

jii

j

sfsumrem || , i=1, m .
(6)

36 I. Hatzilygeroudis and J. Prentzas

It is convenient, for the connectionism-oriented process, to define the firing
potential (fp) of a neurule as follows:

sumrem

sumkn
fp

−
−= ||

 . (7)

The firing potential of a neurule is an estimate of its intention that its output will
become ‘�1’. Whenever fp > 1, the values of the evaluated conditions can determine
the value of its output, regardless of the values of the unevaluated conditions. The rule
then evaluates to ‘1’ (true), if kn-sum > 0 or to ‘-1’ (false), if kn-sum < 0. In the first
case, we say that the neurule is fired, whereas in the second that it is blocked. Notice,
that the firing potential has meaning only if rem-sum � 0. If rem-sum = 0, all the
conditions have been evaluated and its output is evaluated based on kn-sum. For a
multi-neurule, we define as many fps as the size of the multi-neurule.

3.2 Symbolism-Oriented Process

The symbolism-oriented inference process is based on a backward chaining strategy.
There are two stacks used, a goal stack (GS), where the current goal (CG) (condition)
to be evaluated is always on its top, and a neurule stack (NS), where the current
neurule under evaluation is always on its top. The conflict resolution strategy, due to
backward chaining and the neurules, is based on textual order. A neurule succeeds if
it evaluates to ‘true’, that is its output is computed to be ‘1’ after evaluation of its
conditions. Inference stops either when a neurule with a goal variable is fired
(success) or there is no further action (failure). WM denotes the working memory.

More formally, the process is as follows:
1. Put the initial goal(s) on GS.
2. While there are goals on GS do

2.1 Consider the first goal on GS as the current goal (CG) and find the
neurules having it as their conclusion. If there are no such neurules, stop
(failure). Otherwise, put them on RS.

2.2 For each neurule NRi on NS (current rule: CR = NRi) do
2.2.1 (simple neurule case) While CR is not fired or blocked, for each

condition Ci of CR (current condition: CC = Ci) do
2.2.1.1 If CC is already evaluated, update the kn-sum and the rem-

sum of NRx. Otherwise, if it contains an input variable, ask
the user for its value (user data), evaluate CC, put it in WM
and update the kn-sum and the rem-sum of CR, otherwise
(intermediate or output variable) put CC on the top of GS
and execute step 2.1 recursively until CC is evaluated. After
its evaluation update the kn-sum and the rem-sum of CR.

2.2.1.2 If (|kn-sum| > rem-sum and kn-sum > 0), mark CR as ‘fired’,
mark its conclusion as ‘true’, put the conclusion in WM and
remove the current goal from GS (multi-valued variable) or
remove from GS all goals containing the variable (single-
valued variable). If (|kn-sum| > rem-sum and kn-sum < 0),
mark CR as ‘blocked’.

Multi-inference with Multi-neurules 37

2.2.2 (multi-neurule case) While CR is not ‘fired’ or ‘blocked’, for each
RFi (current sf-set: CRF = RFi) of CR do

2.2.2.1 While CRF is not ‘fired’ or ‘blocked’, for each for each
condition Ci of CRF (CC = Ci) do
2.2.2.1.1 The same as 2.2.1.1 (with kn-sumi and rem-sumi

instead of kn-sum and rem-sum, respectively).
2.2.2.1.2 If (|kn-sumi| > rem-sumi and kn-sumi > 0), mark

CR as ‘fired’, mark its conclusion as ‘true’, put
the conclusion in WM and remove the current
goal from GS (multi-valued variable) or remove
from GS all goals containing the variable
(single-valued variable). If (|kn-sumi| > rem-sumi

and kn-sumi < 0), mark CRF as ‘blocked’. If it is
the last rule sf-set, mark CR as ‘blocked’.

2.3 If all neurules on RS are blocked, mark their conclusions as ‘false’, put the
conclusions in WM and remove the current goal from GS.

3. If there are no conclusions in WM containing output variables, stop (failure).
Otherwise, display the conclusions in WM marked as ‘TRUE’ (output data)
and stop (success).

3.3 Connectionism-Oriented Process

Initially, the values of the variables (conditions) may be not known to the system. The
kn-sum for every simple neurule is then set to its bias factor, whereas its rem-sum is
set to the sum of the absolute values of all its significance factors. For a multi-neurule,
this is done for each RFi (i=1, m). If the value of a variable becomes known, it
influences the values of the conditions containing it and hence the known sums, the
remaining sums and the firing potentials of the unevaluated neurules containing them,
which are called affected neurules. As soon as an intermediate neurule becomes
evaluated, the known sums, the remaining sums and the firing potentials of all the
affected neurules are also updated. Updating a multi-neurule consists in updating each
of its fps (kn-sums and rem-sums). Obviously, a firing potential is updated only if the
corresponding remaining sum is not equal to zero.

Unevaluated neurules that are updated, due to a new variable value, constitute the
participating neurules. The inference mechanism tries then to focus on participating
neurules whose firing potential is close to exceeding ‘1’. More specifically, it selects
the one with the maximum firing potential, because it is the most likely, has a greater
intention, to fire. In the case of a multi-neurule, its maximum fp represents the
neurule. The system tries to evaluate the first unevaluated condition, which is the one
with the maximum absolute significance factor (recall that the conditions of a neurule
are sorted). After evaluation of the condition, kn-sum, rem-sum and fp of the neurule
are computed. If rem-sum = 0 or fp > 1, it evaluates and its conclusion is put in the
WM. If the system reaches a final conclusion, it stops.

A more formal description of this inference algorithm, for a NRB containing only
simple neurules, can be found in [6, 11].

38 I. Hatzilygeroudis and J. Prentzas

4 Examples

4.1 Example Knowledge Base

We use as an example to illustrate the functionalities of our system the one presented
in [3]. It contains training data dealing with acute theoretical diseases of the
sarcophagus. There are six symptoms (Swollen feet, Red ears, Hair loss, Dizziness,
Sensitive aretha, Placibin allergy), two diseases (Supercilliosis, Namastosis) whose
diagnoses are based on the symptoms and three possible treatments (Placibin,
Biramibio, Posiboost). Also, dependency information is provided. We used the
dependency information to construct the initial neurules and the training data
provided to train them. The produced knowledge base, which contains five neurules
(NR1-NR5), is illustrated in Table 1. An equivalent knowledge base forming a
multilevel network is presented in [3]. It is quite clear how more natural is our
knowledge base than that in [3].

Table 1.

NR1:
(-0.4) if SwollenFeet is true (3.6),
 HairLoss is true (3.6),

RedEars is true (-0.8)
 then Disease is Supercilliosis

NR2:
 (1.4) if Dizziness is true (4.6),
 SensitiveAretha is true (1.8),

HairLoss is true (1.8)
 then Disease is Namastosis

NR3:
(-2.2) if PlacibinAllergy is true (-5.4),

Disease is Supercilliosis
(4.6)

Disease is Namastosis (1.8),
 then Treatment is Placibin

NR4:
(-4.0) if HairLoss is true (-3.6),
 Disease is Namastosis (3.6),

Disease is Supercilliosis (2.8)
 then Treatment is Biramibio

NR5:
(-2.2, -2.2)
 if Treatment is Placibin (-1.8, 1.8),

 Treatment is Biramibio (1.0,
- 2.6)

 then Treatment is Posiboost

4.2 Example Inference

We suppose that the initial data in the WM is: ‘HairLoss is true’ (TRUE). Since
‘Treatment’ is the only goal variable, its possible conclusions are initially put on GS.
The inference tracing, according to the symbolism oriented process, is briefly
presented in Table 2 (follow the left column first in both pages, then the right).

Multi-inference with Multi-neurules 39

Table 2.

Initial situation and Steps 1, 2-2.1
WM: {‘HairLoss is true’ (TRUE)}
GS: [‘Treatment is Placibin’, ‘Treatment
is

Biramibio’, ‘Treatment is Posi-boost’]
CG: ‘Treatment is Placibin’
RS: [NR3]
Fired neurules:
Blocked neurules:

Step 2.2-2.2.1
CR: NR3
CC: ‘PlacibinAllergy is true’ (NR3)

Step 2.2.1.1
User data: ‘PlacibinAllergy is true’
 (FALSE)
WM: {‘PlacibinAllergy is true’ (FALSE),
 ‘HairLoss is true’ (TRUE)}
Updated sums: kn-sum=3.2, rem-sum=6.4
 (NR3)

Step 2.2.1.2
|kn-sum| < rem-sum (NR3)

Step 2.2.1
CC: ‘Disease is Supercilliosis’ (NR3)

Step 2.2.1.1
GS: [‘Disease is Supercilliosis’, ‘Treatment
is Placibin’, …]
(start of recursion)

Step 2.1-2.2
CG: ‘Disease is Supercilliosis’
RS: [NR1, NR3]
CR: NR1

Step 2.2.1
CC: ‘SwollenFeet is true’ (NR1)

Step 2.2.1.1
User data: ‘SwollenFeet is true’ (FALSE)
WM: {‘SwollenFeet is true’ (FALSE),
‘PlacibinAllergy is true’ (FALSE),
‘HairLoss is true’ (TRUE)}
Updated sums: kn-sum=-4.0, rem-
sum=4.4 (NR1)

Step 2.2.1.2
|kn-sum| < rem-sum (NR1)

Step 2.2.1
CC: ‘HairLoss is true’ (NR1)

Step 2.2.1.1
User data: ‘HairLossis true’ (TRUE)
WM: {‘HairLoss is true’ (TRUE),

GS: [‘Treatment is Placibin’, ‘Treatment
is Biramibio’, ‘Treatment is Posiboost’]

(return from recursion)

Step 2.2.1.1
Updated sums: kn-sum=7.8, rem-sum=1.8
(NR3)

Step 2.2.1.2
|kn-sum| > rem-sum and kn-sum > 0
(NR3)
Fired neurules: NR3, NR1
WM: {‘Treatment is Placibin’ (TRUE),
‘Disease is Supercilliosis’ (TRUE),
‘RedEars is true’ (FALSE), …}
GS: [‘Treatment is Biramibio’, ‘Treatment
is Posiboost’]

Step 2.1-2.2
CG: ‘Treatment is Biramibio’
RS: [NR4]
CR: NR4

Step 2.2.1
CC: ‘HairLoss is true’ (NR4)

Step 2.2.1.1
Updated sums: kn-sum=-7.6, rem-
sum=6.4 (NR4)

Step 2.2.1.2
|kn-sum| > rem-sum and kn-sum < 0
(NR4)
Blocked neurules: NR4

Step 2.3
WM: {‘Treatment is Biramibio’ (FALSE),
‘Treatment is Placibin’ (TRUE), ‘Disease
is Supercilliosis’ (TRUE), …}
GS: [‘Treatment is Posiboost’]

Step 2-2.1-2.2
CG: ‘Treatment is Posiboost’
RS: [NR5]
CR: NR5

Step 2.2.2-2.2.2.1
CRF: RF1-NR5
CC: ‘Treatment is Placibin’ (RF1-NR5)
Given that both conditions are already
evaluated …

Step 2.2.2.1.1-2.2.2.1.2
 … finally:
Updated sums: kn-sum1= -5.0, rem-sum1=
0
|kn-sum| < 0
Blocked RFs: RF1-NR5

40 I. Hatzilygeroudis and J. Prentzas

 ‘SwollenFeet is true’ (FALSE), …}
Updated sums: kn-sum=-0.4, rem-
sum=0.8 (NR1)

Step 2.2.1.2
|kn-sum| < rem-sum (NR1)

Step 2.2.1
CC: ‘RedEars is true’ (NR1)

Step 2.2.1.1
User data: ‘RedEars is true’ (FALSE)
WM:{‘RedEars is true’ (FALSE),
‘HairLossis true’ (TRUE), …}
Updated sums: kn-sum=0.4, rem-sum=0
(NR1)

Step 2.2.1.2
|kn-sum| > rem-sum and kn-sum > 0
(NR1)
Fired neurules: NR1
WM: {‘Disease is Supercilliosis’ (TRUE),
‘RedEars is true’ (FALSE), ‘HairLossis
true’ (TRUE), …}

Step 2.2.2-2.2.2.1
CRF: RF2-NR5
CC: ‘Treatment is Biramibio’
Given that both conditions are already
evaluated …

Step 2.2.2.1.1-2.2.2.1.2
 … finally:
Updated sums: kn-sum2= 2.2, rem-sum2= 0
|kn-sum| > 0
Fired neurules: NR5, NR3, NR1
WM: {‘Treatment is Posiboost’(TRUE),
‘Treatment is Biramibio’ (FALSE),
‘Treatment is Placibin’ (TRUE), ‘Disease
is Supercilliosis’ (TRUE), …}
GS: []

Step 3
Output data: ‘Treatment is Placibin’,
‘Treatment is Posiboost’

5 Experimental Results

In this section, we present experimental results comparing the two inference
processes, the symbolism oriented and the connectionism oriented (see Table 3).

Table 3.

Connectionism oriented
process

Symbolism oriented
processKB

ASKED EVALS ASKED EVALS
ANIMALS
(20 inferences) 162 (8.1), 364 (18.2) 142 (7.1) 251 (12.5)

LENSES
(24 inferences) 79 (3.3) 602 (25.1) 85 (3.5) 258 (10.8)

ZOO
(101 inferences) 1052 (10.4) 8906 (88.2) 1013 (10) 1963 (19.4)

MEDICAL
(134 inferences) 670 (5) 25031 (186.8) 670 (5) 11828 (88.3)

We used four knowledge bases: ANIMALS (from [7]), LENSES and ZOO (from
[8]), MEDICAL (from [9]), of different size and content. Numbers in the ASKED
column (outside the parentheses) represent the number of inputs (variables) whose
values were required/asked to reach a conclusion. The numbers within the parentheses
represent the mean number of required input values (per inference). The number of
inferences attempted for each KB is depicted within the parentheses in the KB

Multi-inference with Multi-neurules 41

column. Furthermore, the numbers in the EVALS columns represent the number of
conditions/inputs visited for evaluation (the mean value within the parentheses). It is
clear, that the symbolism oriented process did equally well or better than the
connectionism oriented in all cases, except one (the shaded one). This is clearer for
the condition evaluations, especially as the number of inferences increases. Given that
the connectionism oriented process is better than the inference processes introduced in
[3] and [10], as concluded in [6, 11], the symbolism oriented process is even better.

6 Conclusion

In this paper, we present an extension to neurules, called multi-neurules. Multi-
neurules, although they make the inference cycle more complicated, increase the
conciseness of the rule base. Simple neurules have the disadvantage that they may
produce multiple representations (sibling neurules) of the same piece of knowledge.
Multi-neurules merge those representations into one. So, although the overall
naturalness seems to increase, interpretation of the significance factors becomes a
tedious task, especially in cases that a large number of sibling rules participate.

We also present a new inference process, which gives pre-eminence to the
symbolic inference than the connectionist one. Thus, it offers more natural inferences.
This new process is proved to be more efficient than the connectionism oriented one.

References

1. Medsker L.R.: Hybrid Neural Networks and Expert Systems. Kluwer Academic
Publishers, Boston (1994)

2. Tirri H.: Replacing the Pattern Matcher of an Expert System with a Neural Network. In: ,
Goonatilake S., Sukdev K. (eds): Intelligent Hybrid Systems. John Wiley & Sons (1995).

3. Gallant, S.I.: Neural Network Learning and Expert Systems. MIT Press (1993)
4. Hatzilygeroudis, I., Prentzas, J.: Neurules: Improving the Performance of Symbolic Rules.

International Journal on AI Tools (IJAIT) 9(1), (2000) 113-130
5. Hatzilygeroudis, I., Prentzas, J.: Constructing Modular Hybrid Knowledge Bases for

Expert Systems. International Journal on AI Tools (IJAIT) 10(1-2) (2001) 87-105
6. Hatzilygeroudis, I., Prentzas, J.: An Efficient Hybrid Rule Based Inference Engine with

Explanation Capability. Proceedings of the 14th International FLAIRS Conference, Key
West, FL. AAAI Press (2001) 227-231

7. Fu L.M.: Neural Networks in Computer Intelligence. McGraw-Hill (1994)
8. DataSet. ftp://ftp.ics.uci.edu/pub/machine-learning-databases/
9. Hatzilygeroudis, I., Vassilakos, P. J., Tsakalidis, A.: XBONE: A Hybrid Expert System for

Supporting Diagnosis of Bone Diseases. In: Pappas, C., Maglaveras, N., Scherrer J.-R.
(eds): Medical Informatics Europe’97 (MIE’97). IOS Press (1997) 295-299.

10. Ghalwash, A.Z.: A Recency Inference Engine for Connectionist Knowledge Bases.
Applied Intelligence 9 (1998) 201-215

11. Hatzilygeroudis I., Prentzas, J.: HYMES: A HYbrid Modular Expert System with Efficient
Inference and Explanation. Proceedings of the 8th Panhellenic Conference on Informatics,
Nicosia, Cyprus, Vol.1 (2001) 422-431

	1 Introduction
	2 Neurules
	2.1 Simple Neurules
	2.2 Training Neurules
	2.3 Multi-neurules
	2.4 Syntax and Semantics

	3 The Hybrid Inference Processes
	3.1 Neurules Evaluation
	3.2 Symbolism-Oriented Process
	3.3 Connectionism-Oriented Process

	4 Examples
	4.1 Example Knowledge Base
	4.2 Example Inference

	5 Experimental Results
	6 Conclusion
	References

