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In this paper, a hybrid knowledge representation formalism that integrates neurocomputing 
into the symbolic framework of production rules is presented. This is achieved by introducing 
neurules, a type of integrated rules. Each neurule is considered as an adaline unit, where 
weights are considered as significance factors. Each significance factor represents the 
significance of the associated condition in drawing the conclusion. A rule is fired when the 
corresponding adaline output becomes active. In this way, naturalness and modularity of 
production rules are retained, and imprecise relations between the conditions and the 
conclusion of a rule can be represented. Additionally, a number of heuristics used in the 
inference procedure result in increasing efficiency. 

1 INTRODUCTION 

Many existing expert systems are rule-based, that is the basis of their knowledge 
representation (KR) language is symbolic rules, often called if-then rules. This is 
due to the very important benefits that production rules offer to knowledge 
representation and reasoning in expert systems, such as naturalness, modularity, 
efficiency and ease of explanation. Rules are a representative of what is called 
symbolic representation. 

Recently, popularity of using what is called connectionism or neurocomputing 
in constructing expert systems has been significantly increased. A new category of 
expert systems, called connectionist expert systems [3], has emerged. Their basis is 
artificial neural networks (ANNs) that provide a totally different approach to 
knowledge representation and reasoning from traditional AI. The main advantages 
of this approach are its capabilities of representing very complex and imprecise 
relationships and learning from experience. 

Nowadays, there has been extensive research activity at combining/integrating 
the symbolic and the neurocomputing approaches (see e.g. [6, 9]). To that end, there 
are a number of efforts at combining production rules and neural networks for 
knowledge representation [5]. Some of them follow the unified approach [3, 4, 8], 
whereas others follow a pseudo-hybrid approach [1, 2, 7], called the translational 
approach in [5]. A weak point of both approaches is that the resulted system lacks 
the naturalness and modularity of symbolic rules. 



 
 

 

In this paper, we introduce a KR formalism which attempts to incorporate 
aspects of neurocomputing within the symbolic framework of production rules in a 
way that preserves their naturalness and modularity on the one hand, and increases 
their efficiency on the other.  

The structure of the paper is as follows. Section 2 presents the integrated 
formalism. In Section 3, methods and mechanisms for constructing a knowledge 
base are described. Section 4 deals with the inference mechanism. An example is 
presented in Section 5 and some experimental results in Section 6. Finally, Section 7 
concludes. 

2 THE HYBRID FORMALISM 

2.1 Integration Model 

We introduce neurules (: neural rules) alongside symbolic rules. Each neurule is 
considered as an adaline unit (Figure 1a). The inputs Ci (i=1...n) of the unit are the 
conditions of the rule. Each condition Ci is assigned a number sfi, called a 
significance factor, corresponding to the weight of the corresponding input of the 
adaline unit. Moreover, each rule itself is assigned a number sf0, called the bias 
factor, corresponding to the weight of the bias input of the unit. The bias factor adds 
flexibility to the model as far as computation of the factors is concerned. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. (a) a neurule as an adaline unit (b) the activation function 
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This gives the opportunity to easily distinguish between the falsity and the 

absence of a condition, in contrast to symbolic rules. The output D, which represents 
the conclusion (decision) of the rule, is calculated via the formulas: 

  D = f(a) ,    a = sf  + sf  C
0 i i

i=1

n
  ∑       

as usual (see e.g. [3]), where a is the activation value and f(x) the activation 
function, which is a threshold function (Figure 1b). Hence, the output can take one 
of two values, '-1' and '1', representing failure and success of the rule respectively. 

2.2 Syntax and Semantics 

The general syntax (structure) of a rule in our formalism is given below1: 
<rule> ::=  [(<bias-factor>)] if <conditions> then <conclusions> 
<conditions> ::= <condition> {, <condition>} 
<conclusions> ::= <conclusion> {, <conclusion>} 
<condition> ::= <variable> <l-predicate> <value-object> [(<significance-factor>)] 
<conclusion> ::= <variable> <r-predicate> <value-object>. 
where <variable> denotes a variable, that is a symbol representing a concept in the 
domain, e.g. “sex”, “pain” etc. <l-predicate> denotes a symbolic or a numeric 
predicate. The symbolic predicates are {is, isnot}, whereas the numeric predicates 
are {<, >, =}. <r-predicate> can only be a symbolic predicate. <value-object> 
denotes a value. It can be a symbol or a number. Different types of <value-object> 
are associated with different predicates. Finally, <bias-factor> and <significance-
factor> are real numbers. 

 
 
 
 
 
 
 

Figure 2. A symbolic rule and a neurule. 
As it is clear, significance factors and the bias factor are optional in a rule. 

Thus, neurules (with factors) and symbolic rules (without factors) are equally 
supported by our representation formalism. (The terminal symbol “,” in the case of a 

                                                           
1A BNF notation is used hereafter, where ‘[]’ denotes optional occurrence and ‘{}’ 
zero, one or more occurrences of the enclosed expression.  

R1: 
if sex is man, 
  age > 20, 
  age < 36 
then patient_class is man_21_35 

R2: 
(-8) if pain is continuous (5), 
    patient_class isnot man_36_55 (2.5), 
    fever is medium (2), 
    fever is high (2) 
  then disease_type is inflammation. 



 
 

 

symbolic rule denotes a conjunction). Two example rules, a symbolic and a neurule, 
from a medical domain, are presented in Figure 2. 

Apart from rules, our formalism also supports variable declarations and facts. 
A variable declaration specifies the type(s) of a variable. A fact has the same format 
as a condition/conclusion of a rule, however, it can have as value the special symbol 
“unknown”. Facts represent either initial conditions or intermediate/final 
conclusions produced during an inference course.  

3 KNOWLEDGE BASE CONSTRUCTION 

There are two ways of constructing a hybrid rule base (HRB), a direct and an 
indirect. The direct method is the normal way of constructing a HRB. The indirect 
method can be used as well, if it is more convenient to construct the initial 
knowledge base using symbolic rules.  

3.1 Direct method 

3.1.1 Constructing and training neurules 

In the direct method both types of rules are used. Symbolic rules are typically used 
to represent conclusions produced in a unique and exact way or conclusions that 
cannot be represented by a single neurule (see subsequent sections). Neurules are 
used in all other cases. 

In constructing a neurule, all conditions that contribute in drawing a conclusion 
constitute the inputs of a rule and the conclusion its output. Thus, one has to produce 
as many rules as the different conclusions, intermediate or final, to be drawn. For 
example, in the medical diagnosis domain, if there are four symptoms expressed as 
the conditions C1, C2, C3, C4 and two diseases D1, D2, such that C1, C2, C3 are 
involved in diagnosing D1, and C3, C4 in diagnosing D2, the following rules are 
constructed: "(0) if C1 (0) , C2 (0) , C3 (0) then D1", "(0) if C3 (0) , C4 (0) then 
D2". Because the LMS algorithm (see next paragraph) needs no specific initial 
values to calculate the factors, a zero initial value is assigned to each factor by 
default.  

After the above has been done, each neurule is individually trained via a 
training mechanism. First, the (final) values of the factors are determined. To this 
end, a number of training patterns, called the training set, are supplied for each rule. 
The standard least mean square (LMS) learning algorithm (see e.g. [3]) is employed 
to calculate the factors. However, in cases where the mechanism fails to find factors 
satisfying all training patterns, symbolic rules are employed (see also Section 3.2.2). 
After training, reorganisation takes place. 



 
 

 

3.1.2 Reorganising neurules 

We distinguish between two types of neurules in a HRB, negative-bias and positive-
bias rules. A neurule is a negative-bias rule if it has a negative bias factor (sf0 < 0), 
whereas it is a positive-bias rule if it has a positive bias factor (sf0 > 0). Also, the 
conditions of a neurule are distributed between two groups, the negative group and 
the positive group. The negative group includes the conditions with negative 
significance factors, whereas the positive group those with positive factors. The 
conditions in the positive group of a negative-bias rule are ranked in descending 
order according to the values of their significance factors. Furthermore, the 
conditions in its negative group are put in front of those in its positive one. 
Similarly, the conditions in the negative group of a positive-bias rule are ranked in 
ascending order according to the values of their significance factors. Also, the 
conditions in its positive group are put in front of those in its negative one. The 
rationale behind all this orderings will become clear in Section 4.2. 

Additionally, for each neurule, a critical condition is determined:  

1. Definition 1. Let {C1,..., Cn} the positive group of a negative-bias rule (sf0 < 
0). Condition Ccr (1 ≤ cr ≤ n) is its critical condition iff 

CRIT = sfi
i cr+1

n

=

∑  ≤ - sf0. 

2. Definition 2. Let {C1,..., Cn} the negative group of a positive-bias rule (sf0 > 
0). Condition Ccr (1 ≤ cr ≤ n) is its critical condition iff 

CRIT = sfi
i cr+1

n

=

∑  ≥ sf0. 

3.2 Indirect Method 

3.2.1 Merging symbolic rules 

In the indirect method, the knowledge base is initially constructed using only 
symbolic rules, as in conventional rule-based systems. Then, symbolic rules are 
transformed into neurules via a conversion mechanism. Symbolic rules with the 
same conclusion are typically merged into one neurule. For example, the rules R5:"if 
C1, C2 then D" and R6:"if C1, C3 then D" are intermediately transformed into "(0) 
if C1 (0), C2 (0), C3 (0) then D", which, after training, results in the neurule R

56
:"(-

2.5) if C1 (2), C2 (1), C3 (1) then D". Each neurule is then reorganized as in the 
direct method. The neurules can be retrained in a later time. 

The training process is the same as in the direct method. The training set of a 
neurule, however, is not given, but is determined by selecting rows from the truth 
table of the combined logical function of the merged rules. The combined function 



 
 

 

represents the disjunction of the conjunctions of the conditions of the rules. For 
example, the factors in the above example have been determined via the CM, with 
T= ([1 0 0 -1], [1 1 0 1], [0 1 1 -1], [1 0 1 1]) as the training set, which includes the 
necessary rows from the truth table of ((C1 AND C2) OR (C1 AND C3)) ≡ (C1 
AND (C2 OR C3)), the combined function of the two symbolic rules. (Although the 
combined truth table includes eight rows, the above four rows subsume the rest 
ones). 

However, not all of the rows in the combined truth table are valid, due to 
domain-specific reasons. To this end, we first introduce the following notion: 

• Two conditions are related conditions if they refer to the same variable. 

We then introduce the following invalid-row criteria: 

• related is-conditions (resp. isnot-conditions) (e.g. “fever is high” and “fever is 
low”) cannot be simultaneously true (resp. false).  

• related is-conditions (resp. isnot-conditions) with exhaustive values cannot be 
simultaneously false (resp. true). 

• an is-condition and an isnot-condition that are related and have the same value 
(e.g. “fever is high”, “fever isnot high”) cannot be simultaneously true. 

We further introduce the following row-remove criterion, which cannot literally 
detected, that is it requires expert’s help. 

• two conditions are inconsistent if they cannot really happen to be 
simultaneously true, due to pragmatic reasons. 

Rows that do not meet the above criteria should be removed from the truth table and 
not used in the training set. 

3.2.2 The non-separability problem 

However, there are cases where the LMS algorithm fails to specify the right 
significance factors for a number of neurules. That is, the corresponding adaline 
units of those rules do not correctly classify some of the training patterns. This 
means that the patterns in the training set correspond to a non-separable (boolean) 
function. It is known that the adaline model cannot fully represent such a function 
[3]. 

To overcome this problem, we successively split the corresponding set of 
merging rules into subsets until the right factors are determined. Splitting is made in 
such a way that the rules in each subset have as more common or related conditions 
as possible and the subsets are of comparable size. So, two or more neurules may be 
produced. In such a situation, a subset may contain just one symbolic rule, which 
remains as it is. Thus, an initial set of merging rules with a non-separable training set 
will produce more than one neurule and possibly one or more symbolic rules. 



 
 

 

4 THE HYBRID INFERENCE MECHANISM 

4.1 Basic Process 

The hybrid inference mechanism is based on a backward chaining strategy. There 
are two stacks used, a goal stack (GS), where the current goal to be matched is 
always on its top, and a rule stack (RS), where the current rule under evaluation is 
always on its top. Our conflict resolution strategy is based on textual order, at the 
moment. A rule succeeds if it evaluates to 'true', that is all of its conditions evaluate 
to 'true', in the case of a symbolic rule, or its output is computed to be '1' after 
evaluation of its conditions, in the case of a neurule.  

A condition evaluates to 'true', if it matches a fact in the working memory 
(WM), that is there is a fact with the same variable, predicate and value. A condition 
evaluates to 'unknown', if there is a fact with the same variable, predicate and the 
value "unknown" as its value. A condition cannot be evaluated if there is no fact in 
the WM with the same variable. Furthermore, it evaluates to 'false', if additionally 
there is no matching rule in the HRB. 

4.2 Inference Heuristics 

4.2.1 Incremental activation computation 

To increase inference efficiency, a number of heuristics are used. First, the 
activation value is incrementally computed, that is contribution of each condition to 
the weighted sum is added immediately after its evaluation. As soon as the sum 
exceeds the threshold, computation stops. 

4.2.2 Ordered condition evaluation 

There are different strategies followed for the evaluation of the negative-bias and the 
positive-bias rules. When computing the activation value of a negative-bias rule, 
first the factors in the negative group are evaluated and then the factors in the 
positive group. Thus, after evaluation of the conditions in the negative group has 
been completed, as soon as the result exceeds the threshold (0), evaluation stops and 
the output gets the value '1' ('true'). Also, since the conditions in the positive group 
of a negative-bias rule are ranked in a descending order, the positively 'heavier' 
conditions are first evaluated, then the 'lighter', speeding up the computation. A 
positive-bias rule is evaluated in a complementary way. 



 
 

 

4.2.3 Critical condition situation 

The following findings concerning the critical condition of a neurule, that can be 
easily proved, are applied (proofs are trivial). 

• If the critical condition in a negative-bias neurule fails (Ccr = 0), provided that 
all preceding ones (negative and positive) also failed, the rule also fails (D = -
1).  

• If the critical condition in a positive-bias neurule fails (Ccr = 0), provided that 
all preceding ones (positive and negative) also failed, the rule succeeds (D = 
1). 

The first means that even if all consequent conditions succeed the activation value 
cannot exceed the threshold (0). Thus, under such a situation evaluation stops. The 
second means that even if all consequent conditions succeed the activation value 
cannot become less than the threshold (0). Thus, under such a situation evaluation 
stops. 

5 AN EXAMPLE 

In this section we present a simple example that illustrates how inference is 
performed in our hybrid formalism. Also it shows how the hybrid approach is more 
efficient than the plain symbolic one. To this end, a symbolic and its equivalent 
hybrid knowledge base are used. 

Let consider the following symbolic rules. R1: "if C2 , C1 then D1", R2: "if C3 
, C1 then D1", R3: "if D1 , C4 then D2", R4: "if D1 , C5 then D2", R5: "if D2 , C6 
then D". Suppose we have the following initial WM: {C1, C3, C5, C6}. Our 
(initial) goal is D. The symbolic inference steps to prove D are illustrated in Fig.3 
(left side, top-down), where a solid arrow means "puts on" the target stack, and a 
dashed arrow means "evaluates to". The equivalent HRB is the following: R12: “(-
2.5) if C1 (2)* , C2 (1) , C3 (1) then D1”, R34: “(-2.5) if D1 (2)* , C4 (1) , C5 (1) 
then D2”, R5:“if D2 , C6 then D”. 

The integrated inference steps to prove D are illustrated in Figures 3-4 (top-
down). It is clear from the example, that plain symbolic representation is more 
expensive than the hybrid one. Also, notice that, due to embedded heuristics, hybrid 
inference is insensitive to changes to the order of the rules. 

 
 
 
 
 
 
 



 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3. Symbolic Inference 

 
 
 

WM: {C1, C3, C5, C6} 
GS: D | D2    |         D1  
 
RS: R5(D2, C6) | R3(D1, C4) | R1(C2, C1) 
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Figure 4. Integrated Inference 

6 EXPERIMENTAL RESULTS 
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from the combined truth table of the merging rules. Also, inferences from the initial 
symbolic rule base were proved to be longer, in terms of the rules visited, and more 
expensive, in terms of the conditions evaluated, than the corresponding ones from 
the hybrid rule base. In the table below a number of experimental results are 
presented. 

Table 1. Experimental Results 

Rules Visited Conditions Evaluated Inference 
No Symbolic Hybrid Symbolic Hybrid 

Decision 

1 7 7 18 19 Inflammation 
2 10 8 27 27 Inflammation 
3 14 9 27 24 Inflammation 
4 24 15 42 48 Arthritis 
5 27 11 64 44 Prim. Malignant 
6 27 14 70 58 Prim. Malignant 
7 35 15 67 60 Prim. Malignant 
8 45 23 73 61 Dec. Metabolical 
9 62 25 93 89 Second. 

Malignant 
Total 242 127 481 430 

 
There is an average of 47,5% reduction in the rules visited and a 10,6% 

reduction in the conditions evaluated in the hybrid case.  

7 CONCLUSIONS 

In this paper a hybrid KR formalism that integrates production rules and an ANN is 
presented. The adaline unit is used within the symbolic framework of production 
rules. So, various benefits of symbolic representation, such as naturalness and 
modularity, are retained. Moreover, imprecise relations between concepts can be 
easily represented.  

Efficiency is also increased, due to the following reasons. First, the number of 
the rules in the knowledge base is reduced. Second, a number of inference heuristics 
are introduced. 

The adaline unit and the LMS algorithm are not of the most powerful existing 
mechanisms. This is a weak point of the formalism and a good reason for further 
investigation.  
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