

Published in in D. Fotiades and S. Nikolopoulos (Eds), “Advances in
Informatics”, World Scientific Pub., 2000, 122-133.

 Copyright World Scientific Pub 2000. All rights reserved.

NEURULES: INTEGRATING SYMBOLIC RULES AND
NEUROCOMPUTING

I. HATZILYGEROUDIS, J. PRENTZAS
University of Patras, School of Engineering

Dept of Computer Engin. & Informatics, 26500 Patras, Hellas
&

Computer Technology Institute, P.O. Box 1122, 26110 Patras, Hellas

In this paper, a hybrid knowledge representation formalism that integrates neurocomputing
into the symbolic framework of production rules is presented. This is achieved by introducing
neurules, a type of integrated rules. Each neurule is considered as an adaline unit, where
weights are considered as significance factors. Each significance factor represents the
significance of the associated condition in drawing the conclusion. A rule is fired when the
corresponding adaline output becomes active. In this way, naturalness and modularity of
production rules are retained, and imprecise relations between the conditions and the
conclusion of a rule can be represented. Additionally, a number of heuristics used in the
inference procedure result in increasing efficiency.

1 INTRODUCTION

Many existing expert systems are rule-based, that is the basis of their knowledge
representation (KR) language is symbolic rules, often called if-then rules. This is
due to the very important benefits that production rules offer to knowledge
representation and reasoning in expert systems, such as naturalness, modularity,
efficiency and ease of explanation. Rules are a representative of what is called
symbolic representation.

Recently, popularity of using what is called connectionism or neurocomputing
in constructing expert systems has been significantly increased. A new category of
expert systems, called connectionist expert systems [3], has emerged. Their basis is
artificial neural networks (ANNs) that provide a totally different approach to
knowledge representation and reasoning from traditional AI. The main advantages
of this approach are its capabilities of representing very complex and imprecise
relationships and learning from experience.

Nowadays, there has been extensive research activity at combining/integrating
the symbolic and the neurocomputing approaches (see e.g. [6, 9]). To that end, there
are a number of efforts at combining production rules and neural networks for
knowledge representation [5]. Some of them follow the unified approach [3, 4, 8],
whereas others follow a pseudo-hybrid approach [1, 2, 7], called the translational
approach in [5]. A weak point of both approaches is that the resulted system lacks
the naturalness and modularity of symbolic rules.

In this paper, we introduce a KR formalism which attempts to incorporate
aspects of neurocomputing within the symbolic framework of production rules in a
way that preserves their naturalness and modularity on the one hand, and increases
their efficiency on the other.

The structure of the paper is as follows. Section 2 presents the integrated
formalism. In Section 3, methods and mechanisms for constructing a knowledge
base are described. Section 4 deals with the inference mechanism. An example is
presented in Section 5 and some experimental results in Section 6. Finally, Section 7
concludes.

2 THE HYBRID FORMALISM

2.1 Integration Model

We introduce neurules (: neural rules) alongside symbolic rules. Each neurule is
considered as an adaline unit (Figure 1a). The inputs Ci (i=1...n) of the unit are the
conditions of the rule. Each condition Ci is assigned a number sfi, called a
significance factor, corresponding to the weight of the corresponding input of the
adaline unit. Moreover, each rule itself is assigned a number sf0, called the bias
factor, corresponding to the weight of the bias input of the unit. The bias factor adds
flexibility to the model as far as computation of the factors is concerned.

Figure 1. (a) a neurule as an adaline unit (b) the activation function

Each input takes a value from the following set of discrete values:

unknown is value if .
false iscondition if
 trueiscondition if {=

50
0
1

iC

C1 C2 Cn

. . .
(sf1)

(sf2)
(sfn)

(sf0)

D

(a)

f(x)

x

1

0
-1

(b)

This gives the opportunity to easily distinguish between the falsity and the

absence of a condition, in contrast to symbolic rules. The output D, which represents
the conclusion (decision) of the rule, is calculated via the formulas:

 D = f(a) , a = sf + sf C
0 i i

i=1

n
 ∑

as usual (see e.g. [3]), where a is the activation value and f(x) the activation
function, which is a threshold function (Figure 1b). Hence, the output can take one
of two values, '-1' and '1', representing failure and success of the rule respectively.

2.2 Syntax and Semantics

The general syntax (structure) of a rule in our formalism is given below1:
<rule> ::= [(<bias-factor>)] if <conditions> then <conclusions>
<conditions> ::= <condition> {, <condition>}
<conclusions> ::= <conclusion> {, <conclusion>}
<condition> ::= <variable> <l-predicate> <value-object> [(<significance-factor>)]
<conclusion> ::= <variable> <r-predicate> <value-object>.
where <variable> denotes a variable, that is a symbol representing a concept in the
domain, e.g. “sex”, “pain” etc. <l-predicate> denotes a symbolic or a numeric
predicate. The symbolic predicates are {is, isnot}, whereas the numeric predicates
are {<, >, =}. <r-predicate> can only be a symbolic predicate. <value-object>
denotes a value. It can be a symbol or a number. Different types of <value-object>
are associated with different predicates. Finally, <bias-factor> and <significance-
factor> are real numbers.

Figure 2. A symbolic rule and a neurule.
As it is clear, significance factors and the bias factor are optional in a rule.

Thus, neurules (with factors) and symbolic rules (without factors) are equally
supported by our representation formalism. (The terminal symbol “,” in the case of a

1A BNF notation is used hereafter, where ‘[]’ denotes optional occurrence and ‘{}’
zero, one or more occurrences of the enclosed expression.

R1:
if sex is man,
 age > 20,
 age < 36
then patient_class is man_21_35

R2:
(-8) if pain is continuous (5),
 patient_class isnot man_36_55 (2.5),
 fever is medium (2),
 fever is high (2)
 then disease_type is inflammation.

symbolic rule denotes a conjunction). Two example rules, a symbolic and a neurule,
from a medical domain, are presented in Figure 2.

Apart from rules, our formalism also supports variable declarations and facts.
A variable declaration specifies the type(s) of a variable. A fact has the same format
as a condition/conclusion of a rule, however, it can have as value the special symbol
“unknown”. Facts represent either initial conditions or intermediate/final
conclusions produced during an inference course.

3 KNOWLEDGE BASE CONSTRUCTION

There are two ways of constructing a hybrid rule base (HRB), a direct and an
indirect. The direct method is the normal way of constructing a HRB. The indirect
method can be used as well, if it is more convenient to construct the initial
knowledge base using symbolic rules.

3.1 Direct method

3.1.1 Constructing and training neurules

In the direct method both types of rules are used. Symbolic rules are typically used
to represent conclusions produced in a unique and exact way or conclusions that
cannot be represented by a single neurule (see subsequent sections). Neurules are
used in all other cases.

In constructing a neurule, all conditions that contribute in drawing a conclusion
constitute the inputs of a rule and the conclusion its output. Thus, one has to produce
as many rules as the different conclusions, intermediate or final, to be drawn. For
example, in the medical diagnosis domain, if there are four symptoms expressed as
the conditions C1, C2, C3, C4 and two diseases D1, D2, such that C1, C2, C3 are
involved in diagnosing D1, and C3, C4 in diagnosing D2, the following rules are
constructed: "(0) if C1 (0) , C2 (0) , C3 (0) then D1", "(0) if C3 (0) , C4 (0) then
D2". Because the LMS algorithm (see next paragraph) needs no specific initial
values to calculate the factors, a zero initial value is assigned to each factor by
default.

After the above has been done, each neurule is individually trained via a
training mechanism. First, the (final) values of the factors are determined. To this
end, a number of training patterns, called the training set, are supplied for each rule.
The standard least mean square (LMS) learning algorithm (see e.g. [3]) is employed
to calculate the factors. However, in cases where the mechanism fails to find factors
satisfying all training patterns, symbolic rules are employed (see also Section 3.2.2).
After training, reorganisation takes place.

3.1.2 Reorganising neurules

We distinguish between two types of neurules in a HRB, negative-bias and positive-
bias rules. A neurule is a negative-bias rule if it has a negative bias factor (sf0 < 0),
whereas it is a positive-bias rule if it has a positive bias factor (sf0 > 0). Also, the
conditions of a neurule are distributed between two groups, the negative group and
the positive group. The negative group includes the conditions with negative
significance factors, whereas the positive group those with positive factors. The
conditions in the positive group of a negative-bias rule are ranked in descending
order according to the values of their significance factors. Furthermore, the
conditions in its negative group are put in front of those in its positive one.
Similarly, the conditions in the negative group of a positive-bias rule are ranked in
ascending order according to the values of their significance factors. Also, the
conditions in its positive group are put in front of those in its negative one. The
rationale behind all this orderings will become clear in Section 4.2.

Additionally, for each neurule, a critical condition is determined:

1. Definition 1. Let {C1,..., Cn} the positive group of a negative-bias rule (sf0 <
0). Condition Ccr (1 ≤ cr ≤ n) is its critical condition iff

CRIT = sfi
i cr+1

n

=

∑ ≤ - sf0.

2. Definition 2. Let {C1,..., Cn} the negative group of a positive-bias rule (sf0 >
0). Condition Ccr (1 ≤ cr ≤ n) is its critical condition iff

CRIT = sfi
i cr+1

n

=

∑ ≥ sf0.

3.2 Indirect Method

3.2.1 Merging symbolic rules

In the indirect method, the knowledge base is initially constructed using only
symbolic rules, as in conventional rule-based systems. Then, symbolic rules are
transformed into neurules via a conversion mechanism. Symbolic rules with the
same conclusion are typically merged into one neurule. For example, the rules R5:"if
C1, C2 then D" and R6:"if C1, C3 then D" are intermediately transformed into "(0)
if C1 (0), C2 (0), C3 (0) then D", which, after training, results in the neurule R

56
:"(-

2.5) if C1 (2), C2 (1), C3 (1) then D". Each neurule is then reorganized as in the
direct method. The neurules can be retrained in a later time.

The training process is the same as in the direct method. The training set of a
neurule, however, is not given, but is determined by selecting rows from the truth
table of the combined logical function of the merged rules. The combined function

represents the disjunction of the conjunctions of the conditions of the rules. For
example, the factors in the above example have been determined via the CM, with
T= ([1 0 0 -1], [1 1 0 1], [0 1 1 -1], [1 0 1 1]) as the training set, which includes the
necessary rows from the truth table of ((C1 AND C2) OR (C1 AND C3)) ≡ (C1
AND (C2 OR C3)), the combined function of the two symbolic rules. (Although the
combined truth table includes eight rows, the above four rows subsume the rest
ones).

However, not all of the rows in the combined truth table are valid, due to
domain-specific reasons. To this end, we first introduce the following notion:

• Two conditions are related conditions if they refer to the same variable.

We then introduce the following invalid-row criteria:

• related is-conditions (resp. isnot-conditions) (e.g. “fever is high” and “fever is
low”) cannot be simultaneously true (resp. false).

• related is-conditions (resp. isnot-conditions) with exhaustive values cannot be
simultaneously false (resp. true).

• an is-condition and an isnot-condition that are related and have the same value
(e.g. “fever is high”, “fever isnot high”) cannot be simultaneously true.

We further introduce the following row-remove criterion, which cannot literally
detected, that is it requires expert’s help.

• two conditions are inconsistent if they cannot really happen to be
simultaneously true, due to pragmatic reasons.

Rows that do not meet the above criteria should be removed from the truth table and
not used in the training set.

3.2.2 The non-separability problem

However, there are cases where the LMS algorithm fails to specify the right
significance factors for a number of neurules. That is, the corresponding adaline
units of those rules do not correctly classify some of the training patterns. This
means that the patterns in the training set correspond to a non-separable (boolean)
function. It is known that the adaline model cannot fully represent such a function
[3].

To overcome this problem, we successively split the corresponding set of
merging rules into subsets until the right factors are determined. Splitting is made in
such a way that the rules in each subset have as more common or related conditions
as possible and the subsets are of comparable size. So, two or more neurules may be
produced. In such a situation, a subset may contain just one symbolic rule, which
remains as it is. Thus, an initial set of merging rules with a non-separable training set
will produce more than one neurule and possibly one or more symbolic rules.

4 THE HYBRID INFERENCE MECHANISM

4.1 Basic Process

The hybrid inference mechanism is based on a backward chaining strategy. There
are two stacks used, a goal stack (GS), where the current goal to be matched is
always on its top, and a rule stack (RS), where the current rule under evaluation is
always on its top. Our conflict resolution strategy is based on textual order, at the
moment. A rule succeeds if it evaluates to 'true', that is all of its conditions evaluate
to 'true', in the case of a symbolic rule, or its output is computed to be '1' after
evaluation of its conditions, in the case of a neurule.

A condition evaluates to 'true', if it matches a fact in the working memory
(WM), that is there is a fact with the same variable, predicate and value. A condition
evaluates to 'unknown', if there is a fact with the same variable, predicate and the
value "unknown" as its value. A condition cannot be evaluated if there is no fact in
the WM with the same variable. Furthermore, it evaluates to 'false', if additionally
there is no matching rule in the HRB.

4.2 Inference Heuristics

4.2.1 Incremental activation computation

To increase inference efficiency, a number of heuristics are used. First, the
activation value is incrementally computed, that is contribution of each condition to
the weighted sum is added immediately after its evaluation. As soon as the sum
exceeds the threshold, computation stops.

4.2.2 Ordered condition evaluation

There are different strategies followed for the evaluation of the negative-bias and the
positive-bias rules. When computing the activation value of a negative-bias rule,
first the factors in the negative group are evaluated and then the factors in the
positive group. Thus, after evaluation of the conditions in the negative group has
been completed, as soon as the result exceeds the threshold (0), evaluation stops and
the output gets the value '1' ('true'). Also, since the conditions in the positive group
of a negative-bias rule are ranked in a descending order, the positively 'heavier'
conditions are first evaluated, then the 'lighter', speeding up the computation. A
positive-bias rule is evaluated in a complementary way.

4.2.3 Critical condition situation

The following findings concerning the critical condition of a neurule, that can be
easily proved, are applied (proofs are trivial).

• If the critical condition in a negative-bias neurule fails (Ccr = 0), provided that
all preceding ones (negative and positive) also failed, the rule also fails (D = -
1).

• If the critical condition in a positive-bias neurule fails (Ccr = 0), provided that
all preceding ones (positive and negative) also failed, the rule succeeds (D =
1).

The first means that even if all consequent conditions succeed the activation value
cannot exceed the threshold (0). Thus, under such a situation evaluation stops. The
second means that even if all consequent conditions succeed the activation value
cannot become less than the threshold (0). Thus, under such a situation evaluation
stops.

5 AN EXAMPLE

In this section we present a simple example that illustrates how inference is
performed in our hybrid formalism. Also it shows how the hybrid approach is more
efficient than the plain symbolic one. To this end, a symbolic and its equivalent
hybrid knowledge base are used.

Let consider the following symbolic rules. R1: "if C2 , C1 then D1", R2: "if C3
, C1 then D1", R3: "if D1 , C4 then D2", R4: "if D1 , C5 then D2", R5: "if D2 , C6
then D". Suppose we have the following initial WM: {C1, C3, C5, C6}. Our
(initial) goal is D. The symbolic inference steps to prove D are illustrated in Fig.3
(left side, top-down), where a solid arrow means "puts on" the target stack, and a
dashed arrow means "evaluates to". The equivalent HRB is the following: R12: “(-
2.5) if C1 (2)* , C2 (1) , C3 (1) then D1”, R34: “(-2.5) if D1 (2)* , C4 (1) , C5 (1)
then D2”, R5:“if D2 , C6 then D”.

The integrated inference steps to prove D are illustrated in Figures 3-4 (top-
down). It is clear from the example, that plain symbolic representation is more
expensive than the hybrid one. Also, notice that, due to embedded heuristics, hybrid
inference is insensitive to changes to the order of the rules.

Figure 3. Symbolic Inference

WM: {C1, C3, C5, C6}
GS: D | D2 | D1

RS: R5(D2, C6) | R3(D1, C4) | R1(C2, C1)

WM: {C1, C3, C5, C6}
GS: D | D2 | D1

RS: R5(D2, C6) | R3(D1, C4) | R2(C3, C1)

WM: {C1, C3, C5, C6, D1}
GS: D | D2

RS: R5(D2, C6) | R3(D1, C4)

WM: {C1, C3, C5, C6, D1}
GS: D | D2

RS: R5(D2, C6) | R4(D1, C5)

WM: {C1, C3, C5, C6, D1, D2}
GS: D

RS: R5(D2, C6)

WM: {C1, C3, C5, C6, D1, D2, D}
GS:
RS:

false

failure

true
true

success

true
false

failure

true
true

success

true
true

success

Figure 4. Integrated Inference

6 EXPERIMENTAL RESULTS

A number of experiments were made to evaluate so
formalism. The indirect method was applied to a symb
contained sixty-two symbolic rules. Twenty of those ru
and thus remained symbolic. From the rest forty-two rul
symbolic rules were resulted. Finally, the total number
base was thirty-seven.
Inferences were proved to be equivalent in both cases: w
for the same variable-value data both in the symb
Equivalence is basically guaranteed by the fact that ne

WM: {C1, C3, C5, C6}
GS: D | D2 | D1

RS: R5(D2, C6) | N34(D1, C4, C5) | N12(C1,

WM: {C1, C3, C5, C6, D
GS: D | D2

RS: R5(D2, C6) | N34(D1, C4, C5}

WM: {C1, C3, C5, C6, D1, D2}
GS: D

RS: R5(D2, C6)

WM: {C1, C3, C5, C6, D1, D2, D}
GS:
RS:

fa

su

a=

a=

a=
a=
a=

success
true
C2, C3)

false

success

 -2.5+2=-0.5

a= -0.5

-0.5+1=0.5

 -2.5+2=-0.5

1}

true
true
 -0.5
 -0.5+1=0.5
lse
true
ccess
true

true
me aspects of the hybrid
olic medical rule base that

les had a unique conclusion
es twelve neurules and five
 of rules in the hybrid rule

e had the same conclusions
olic and the hybrid case.
urules are trained with data

from the combined truth table of the merging rules. Also, inferences from the initial
symbolic rule base were proved to be longer, in terms of the rules visited, and more
expensive, in terms of the conditions evaluated, than the corresponding ones from
the hybrid rule base. In the table below a number of experimental results are
presented.

Table 1. Experimental Results

Rules Visited Conditions Evaluated Inference
No Symbolic Hybrid Symbolic Hybrid

Decision

1 7 7 18 19 Inflammation
2 10 8 27 27 Inflammation
3 14 9 27 24 Inflammation
4 24 15 42 48 Arthritis
5 27 11 64 44 Prim. Malignant
6 27 14 70 58 Prim. Malignant
7 35 15 67 60 Prim. Malignant
8 45 23 73 61 Dec. Metabolical
9 62 25 93 89 Second.

Malignant
Total 242 127 481 430

There is an average of 47,5% reduction in the rules visited and a 10,6%

reduction in the conditions evaluated in the hybrid case.

7 CONCLUSIONS

In this paper a hybrid KR formalism that integrates production rules and an ANN is
presented. The adaline unit is used within the symbolic framework of production
rules. So, various benefits of symbolic representation, such as naturalness and
modularity, are retained. Moreover, imprecise relations between concepts can be
easily represented.

Efficiency is also increased, due to the following reasons. First, the number of
the rules in the knowledge base is reduced. Second, a number of inference heuristics
are introduced.

The adaline unit and the LMS algorithm are not of the most powerful existing
mechanisms. This is a weak point of the formalism and a good reason for further
investigation.

REFERENCES

1. B. Boutsinas and M. N. Vrahatis, Nonmonotonic Connectionist Expert Systems,
Proceedings of the 2nd IMACS CSC'98 (Athens, 1998).

2. Fu L-M and L-C Fu, Mapping rule-based systems into neural architecture,
Knowledge-Based Systems 3 (1990) pp. 48-56.

3. Gallant S.I., Neural Network Learning and Expert Systems (MIT Press, 1993).
4. Ghalwash A. Z., A Recency Inference Engine for Connectionist Knowledge

Bases, Applied Intelligence 9 (1998) pp. 201-215.
5. Hilario M., An Overview of Strategies for Neurosymbolic Integration. In

Connectionist-Symbolic Integration: From Unified to Hybrid Approaches, ed.
by Sun R. and E. Alexandre (Lawrence Erlbaum, 1997), chapter 2.

6. Medsker L.R., Hybrid Neural Networks and Expert Systems (Kluwer Academic
Publishers, Boston, 1994).

7. Towell G. G. and Shalvik J. W., Knowledge-based artificial neural networks,
Artificial Intelligence 70 (1994) pp. 119-165.

8. Sun R., Integrating Rules and Connectionism for Robust Commonsense
Reasoning (Sixth-Generation Computer Technology, John Wiley & Sons,
1994).

9. Sun R. and E. Alexandre (Eds), Connectionist-Symbolic Integration: From
Unified to Hybrid Approaches (Lawrence Erlbaum, 1997).

	INTRODUCTION
	THE HYBRID FORMALISM
	Integration Model
	Syntax and Semantics

	KNOWLEDGE BASE CONSTRUCTION
	Direct method
	Constructing and training neurules
	Reorganising neurules

	Indirect Method
	Merging symbolic rules
	The non-separability problem

	THE HYBRID INFERENCE MECHANISM
	Basic Process
	Inference Heuristics
	Incremental activation computation
	Ordered condition evaluation
	Critical condition situation

	AN EXAMPLE
	EXPERIMENTAL RESULTS
	CONCLUSIONS

