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Abstract 

In this paper, XBONE, a hybrid medical expert system that supports diagnosis of bone 
diseases is presented. Diagnosis is based on various patient data and is performed in two 
stages. In the early stage, diagnosis is based on demographic and clinical data of the 
patient, whereas in the late stage it is mainly based on nuclear medicine image data. 
Knowledge is represented via an integrated formalism that combines production rules 
and the Adaline artificial neural unit. Each condition of a rule is assigned a number, 
called its significance factor, representing its significance in drawing the conclusion of 
the rule. 
Keywords: hybrid expert systems, decision support systems, knowledge representation. 

 
1. Introduction 

Medical diagnosis is a very active field as far as introduction of artificial intelligence 
methods is concerned. Expert systems (ESs) are used to perform diagnoses based on patient 
data, as they can represent the way experts reason. Diagnosis of bone diseases is greatly 
facilitated by the use of nuclear medicine methods, more specifically of scintigraphic 
images (or scintigrams or scans), and a number of relevant expert systems have been 
developed [1, 7]. These systems, however, are based on a single representation scheme. 
Expert systems technology is moving towards hybrid representations, that is integrations of 
more than one representation scheme. A promissing integration is that of a symbolic 
representation, e.g. frames or rules, with a connectionist one, i.e. various artificial neural 
networks (ANNs), [5, 6, 2]. 

In this paper, we present a hybrid medical expert system, called XBONE, which uses a 
hybrid representation formalism integrating rules and an artificial neural unit. In section 2 
the medical knowledge involved is presented. In section 3 the architecture of the system is 
discussed. Section 4 deals with the hybrid knowledge representation formalism, and finally 
Section 5 concludes. 

2. Medical Knowledge 

2.1 Patient Data 
Patient data can be distinguished in three types: demograhic, clinical and nuclear 

medicine image (NMI) data. Demographic data concerns information such as patient's age, 
sex etc. Clinical data is further distinguished in physical findings and laboratory results. 
Physical findings are those detected by a physical examination of the patient, like the 
existence and the kind of a pain, called clinical symptoms as well. Laboratory results are 
those detected via laboratory tests, e.g. blood tests. Finally, NMI data is that extracted from 
scintigraphic images acquired that depict the concentration of an administered radio-
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pharmaceutical (99m Tc-MDP) on patient's osseous tissue. Patient data are related to called 
domain knowledge. 

 

2.2 Diagnostic knowledge 
Diagnostic knowledge concerns the way a diagnosis is performed. It is distinguished in 

two types. The first type, procedural diagnostic knowledge, reflects the diagnostic 
procedure. Diagnosis of bone diseases is a two-fold procedure. An initial diagnosis, called 
early diagnosis, is made based on the demographic and clinical data of the patient. This is 
then used either to specify the kind of the scan needed (simple or 3-phase) or to be 
compared with a late diagnosis based on the NMI data. This later diagnosis may or may not 
coincide with the initial. 

The second type of diagnostic knowledge, heuristic diagnostic knowledge, represents 
experience accumulated through years and concerns the way an expert uses the patient data 
to make diagnoses. We acquired heuristic knowledge by interviewing experts in the field 
and constructed a diagnostic tree based on criteria such as the sex and the age of the patient, 
the existence and the acuteness of symptoms (e.g. pain, fever) etc, as far as non NMI data is 
concerned. As to the NMI data, criteria are related to the recognition of the characteristic 
pattern of the radio-pharmaceutical concentration in a scintigram, which is based on 
qualitative features, such as whether the concentration is uniform or not etc, and 
quantitative features, such as whether the concentration is normal, slightly increased etc. 
Each pattern gives an indication of one of the following involved bone disease categories: 
metastases, hyperplasia of spinal cord, traumas, orthopeadic abnormalities, arthrites, 
metabolic diseases, spinal cord diseases, Paget disease, benign tumors and malignant 
tumors. 
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Fig.1 The Architecture of XBONE 

3. System Architecture 
The architecture of the system is illustrated in Fig.1. It consists of six main modules. 

Patients DataBase (PDB) contains the demographic data and the scintigrams of the 
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patients. Scintigrams are acquired by a γ-camera and then automaticaly transferred to the 
system [4]. Hybrid Knowledge Base (HKB) contains the domain and the heuristic 
diagnostic knowledge, represented via a hybrid representation formalism. Working 
Database (WDB) contains the case-specific data, that is the (initial) patient data, partial 
conclusions and answers given by the user, represented as facts. Demographic patient data 
are transferred to WDB from PDB. Hybrid Inference Engine (HIE) realizes the procedural 
knowledge and uses the available heuristic knowledge in HRB to draw conclusions and 
make diagnoses. Explanation Mechanism (EM) creates explanations when asked to do so. 
Training Mechanism (TM) is used for rule training. Finally, User Interface (UI) performs a 
number of functions as far as user interaction with the system is concerned. 

4. Knowledge Representation in XBONE 

4.1 The Hybrid Formalism 
We introduce neurules alongside conventional rules. Each neurule is considered as an 

adaline unit (Fig.2a,b). The inputs Ci, i=1,...,n of the unit are the conditions of the rule. 
Each condition Ci is assigned a number sfi, called a significance factor, corresponding to 
the weight of the input of the adaline unit. Each significance factor represents the 
significance of the corresponding condition in drawing the conclusion of the rule. 
Moreover, each rule itself is assigned a number sf0, called the bias factor, corresponding to 
the weight of the bias input (C0 = 1) of the unit. 

Each input takes a value from the following set of discrete values: 
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This gives the opportunity to easily distinguish between the falsity and the absence of a 
condition, in contrast to conventional rule-based systems.  
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Fig.2 (a) A neurule (b) Corresponding adaline unit (c) Activation function 

The output D, which represents the conclusion (decision) of the rule, is calculated as the 
weighted sum of the inputs filtered by a threshold function(see e.g. [3]): 

  D = f(a) ,    a = 0  + i i
i=1

n
s f  s f   C∑     (1) 

where a is the activation value and f(x) the activation (threshold) function (Fig.2c). Hence, 
the output can be one of '-1' and '1', representing failure and success of the rule respectively. 
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The general syntax of a rule is the following1: 

<rule> ::= [(<bias-factor>)] if <conditions> then <conclusions> 
<conditions> ::= <condition> {, <condition>} 
<conclusions> ::= <conclusion> {, <conclusion>} 
<condition> ::= <object> <l-operator> <value> [(<significance-factor>)] 
<conclusion> ::= <object> <r-operator> <value>. 

<object> acts as a variable and represents a concept in the domain, e.g. "sex", "pain" etc. <l-
operator> can be a symbolic (e.g. is, isnot) or a numeric operator (e.g. <, =, >), whereas <r-
operator> can be only “is”. <value> denotes a value of the <object>, numeric or symbolic. 
Finally, <bias-factor> and <significance-factor> are real numbers. As it is clear, 
significance factors and the bias factor are optional in a rule. Thus, neurules (with factors) 
and conventional production rules (without factors) may coexist in the knowledge base. 
(The terminal symbol "," in the case of a conventional rule denotes a conjunction).  

The formalism also supports variable declarations that have the following syntax: 
 <variable-declaration> ::= <variable> : <multiplicity> : <value-domain> 

and declare the types and the value domains of the variables. <multiplicity> can be either 
“s” or “m” and denotes whether a variable is single-valued or multi-valued respectively. 
<value-domain> declares the possible values or the numeric type of a variable. Examples: 
“fever:s: (high, medium, low)”, “symptom:m:(pain, fever)” and “age:s:integer”. 

Finally, the formalism supports facts. A fact has the same format as a conclusion of a 
rule. Facts represent either initial conditions or conclusions and are stored in WDB. 

4.2 Hybrid Knowledge Base 
HRB consists of Domain Knowledge Base (DKB) and Hybrid Rule Base (HRB). DKB 

contains domain knowledge, represented via variable declarations. HRB consists of Early 
Diagnosis Rule Base (EDRB) and Late Diagnosis Rule Base (LDRB), which contain 
knowledge concerning the early and the late diagnosis respectively, represented via rules. 
HRB may contain both conventional rules and neurules (Fig.3). Conventional rules are 
typically used to represent conclusions produced in a unique and exact way, in contrast to 
neurules, or conclusions that cannot be represented by a neurule (see next section). 
 
  R1:     R2: 
  if sex is man ,   (-8) if pain is continuous (5) , 
 age >= 20 ,  patient_class is man_20_35 (2.5) , 
 age < 35 fever is medium (2) , 
 then patient_class is man_20_35  fever is high (2) 
 then disease_type is inflammation 

Fig.3 A conventional rule and a neurule. 
 
4.3 Training neurules 

The factors assigned to neurules are determined by TM. Each neurule is individually 
trained. To this end, a number of training patterns, called a training set, are supplied to TM 
for each rule. Each rule is optionally given initial values to its significance factors and bias 
factor, when introduced in HRB. Training of the neurules takes place in a period prior to the 
initial use of the system and every time the system is updated. The training sets are 

                                                 
1A BNF notation is used here, where '[]' denotes optional occurrence and '{}' zero, one or more 
occurrences of the enclosed expression. Also, '<>' denotes a nonterminal symbol. All other symbols 
are terminal. 
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extracted from known (old) patient cases and/or the diagnostic tree. The standard least 
mean square (LMS) learning algorithm (see [3]) is employed to calculate the values of the 
factors.  

However, there are cases where TM fails to find converging factors: the training set of a 
rule corresponds to a non-separable function (see [3]). This is an inherent weakness of the 
Adaline model. Then, conventional rules should be employed. 

4.4 The Hybrid Inference Process 
An inference process is peformed in two stages, the early diagnosis stage and the late 

diagnosis stage. During the early diagnosis stage EDRB is activated, the system asks 
questions about patient’s clinical data and produces a first diagnosis. During the late 
diagnosis stage, LDRB is activated. Activation of LDRB requires that a series of 
scintigrams of the patient be automatically loaded. Afterwards, the system asks questions 
about NMI data. Finally, it suggests a diagnosis that may or may not coincide with the first 
one. It is then up to the user-physician to decide on the final diagnosis. 

The inference mechanism is based on a backward chaining strategy. There are two stacks 
used, a goal stack, where the current goal (conclusion/condition) to be matched is always 
on its top, and a rule stack, where the current rule under evaluation is always on its top. A 
rule succeeds if it evaluates to 'true', that is all of its conditions evaluate to 'true', in the case 
of a conventional rule, or its output is computed to be '1', via formula (1), after evaluation of 
its conditions, in the case of a neurule.  

5. Conclusions  
In this paper, a hybrid medical expert system that supports diagnosis of bone diseases via 

scintigrams is presented. NMI data are extracted by the user-physician. Although there are 
systems using computer-based methods for NMI data extraction (e.g. [7]), image processing 
techniques are not very reliable and are not preferred (e.g. [1]). On the other hand, this 
makes participation of the user-physician more active. 

Knowledge is represented via a formalism integrating conventional rules and neurules. 
This results in better representation, since one can represent more complex relations 
between conditions, and facilitates knowledge acquisition. All that an expert has to do is to 
determine the symptoms involved in diagnosing various diseases and the training sets. 

A weak point of neurules is their inability to represent non-separable training patterns. To 
overcome this, a more complex (two layer) neural network is required. This, however, may 
make representation more complex, less comprehensible and modularity may be lost. 
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