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Abstract: In this paper, we present an intelligent and adaptive web-based education system that 
uses a hybrid AI approach for determination of the difficulty levels of the provided exercises. More 
specifically, a combination of the expert systems approach and a genetic algorithm approach is 
used. A genetic algorithm is used to extract some kind of rules from the data acquired from the 
interactions of the students with the system when answering to questions/exercises. Those rules are 
used to modify expert rules provided by the Tutor. In this way, feedback from the students is taken 
into account for determination of the difficulty levels of the questions/exercises. This is important 
because the difficulty levels of the exercises are taken into account for the evaluation of the 
knowledge levels of the students with regards to various concepts. Experimental results show that a 
significant part of questions/exercises may need to change their level of difficulty. Furthermore, the 
validity of the method is experimentally showed.  
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1   Introduction 
 
There have been two popular categories of educational systems: a) Intelligent Tutoring 
Systems (ITSs) and b) Adaptive Educational Hypermedia Systems (AEHSs).  

ITSs take into account the user’s preferences and knowledge level and adapt 
presentation of the teaching material to his/her needs. This is mainly achieved by using 
AI techniques to represent pedagogical decisions as well as domain knowledge and 
information regarding each student (Polson and Richardson, 1988). ITSs were usually 
developed as stand-alone systems. However, the emergence of the WWW gave rise to a 
number of Web-based ITSs, a type of Web-Based Intelligent Educational Systems 
(WBIESs) (Brusilovski and Paylo, 2003). 

AEHSs are specifically developed for hypertext environments such as the WWW. The 
main services offered to their users are adaptive presentation of the teaching content and 
adaptive navigation by adapting the page hyperlinks (Brusilovski, 1998). Compared to 
'classical' ITSs, they offer a greater sense of freedom to the user, since they allow a 
guided navigation to the user-adapted educational pages. Furthermore, they dynamically 
construct or adapt the educational pages in contrast to 'classical' ITSs in which the 
contents of the educational pages are typically static. Enhancing AEHSs with aspects and 
techniques from ITSs creates a type of what are called Adaptive and Intelligent 
Educational Systems (AIESs) (Brusilovski and Paylo, 2003).  

On the other hand, e-learning environments provide facilities mainly for helping course 
generation and management and refer to both the tutors and the students. Adding 
facilities (intelligent or not) for tutors in WBIESs make them a kind of intelligent e-
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learning systems (IELSs) (e.g. Christea et al, 2004). An important function of such 
systems is management of exercises, which provides facilities for adapting exercises to 
the students and/or generating exercises, thus helping the tutor. Existing systems dealing 
with exercises usually concern automatic generation of exercises adapted to the students 
or adaptation of the content of the exercises. For example, in Multibook, exercises can be 
automatically created based on an ontology representing the curriculum of a course 
(Fischer and Steinmetz, 2000). In (Rioja et al, 2003) parametric type exercises are 
generated and sequenced according to the students needs. A parametric exercise is an 
exercise that can be replicated as many times as necessary with different data. Those 
replications can be of variable complexity, therefore exercises sequencing is of 
importance. Finally, in (Lahtinen and Sutinen, 2004) exercises are constructed according 
to the student type based on ‘exerciselets’, which are modular components of complete 
exercises. An exercise is constructed based on vector space distance between the student 
and corresponding exerciselets. 

However, an aspect that has not been paid attention to is the determination of the 
difficulty level of testing questions or exercises. Given that there are systems that use the 
difficulty level of questions or exercises for student evaluation (Hatzilygeroudis eta al, 
2005a; Hatzilygeroudis eta al, 2005b) determination of the right difficulty level can be 
important. Also, adaptation of the difficulty levels to specific students may be useful. We 
are not aware of any attempt that deals with that aspect. Also, a few of the existing 
systems integrate more than one AI technique to implement exercises management or 
adaptation processes. 

To help the students and the tutors in our Department, we constructed an Artificial 
Intelligence Teaching System (AITS) to assist learning and teaching in the context of the 
course of “Artificial Intelligence”. AITS is an adaptive and intelligent system. It adapts 
the course material to the student’s needs as much as possible, based on his/her profile 
and knowledge level [8, 9]. Knowledge level is evaluated via an expert system, which 
takes into account the difficulty level of questions/exercises. Additionally the system 
provides means to the tutor for constructing questions and tests in a structured way 
(Hatzilygeroudis eta al, 2005a).  

In this paper, we present a new capability of the system. With the help of a hybrid 
intelligent system, the system adapts the difficulty level of exercises, taking into account 
the number of tries, the number of hints and the time spent on exercises by the students. 
Thus, by incorporating AI techniques it improves tutors’ adaptability in a dynamic and 
quantifiable way enriching its importance for contemporary education in our Department.  

The structure of the paper is as follows. Section 2 presents the system architecture. In 
Section 3, the domain knowledge structure is described. Section 4 deals with the learning 
process, whereas Section 5 with the exercises management tool of the system. Section 6 
briefly refers to student evaluation. Section 7 presents exercises adaptation and how the 
hybrid intelligent system is involved in that. Section 8 deals with implementation issues 
and finally Section 9 concludes the paper. 
 
 
2   System Architecture 
 
The architecture of the system is depicted in Figure 1. The system consists of seven units: 
the User Interface (UI), the Student Modeling Unit (SM), the Tutoring Unit (TU), the 
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Evaluation Unit (EU), the Exercise-Adaptation unit (EA), the Intelligent Unit (IU) and 
the Exercises database (EDB).  

Through UI the student initially subscribes to the system. During subscription some 
personal settings are saved. After subscription the student can, at any time, enter the 
system through the UI. 

SM contains all the information about students, like their preferences, interests, 
knowledge level, etc. We use stereotypes to acquire an initial profile for each student, so 
the system can use that profile for adaptation. This is achieved by using a questionnaire 
that gets information about student's knowledge, preferences and goals. This information 
is saved in the SM, which can later be updated by acquiring new information. 

TU is responsible for the teaching process. A student can select a learning goal from the 
learning goals tree. The corresponding material is then presented to the student. The 
material consists of theory and examples. The student is also able to select a test to 
evaluate him/herself about how well he/she has learned a concept so far. After the student 
has taken a test, the system stores the results concerning each concept, which the student 
has been examined at, and, if the results are not satisfactory, it advises him to study again 
the corresponding concepts and suggests some new tests that contain questions only 
about the problematic concepts. 

The main goal of EU is to evaluate student's progress due to his/her interaction with the 
system. This evaluation is achieved through testing. From testing results the tutor is able 
to watch each student's progress. He/she is also able to see some statistical results over 
the concepts and sections the student has been examined at. The system can also provide 
the overall results to the tutor, about all students that were examined at a specific test. 
The Students Expert System (SES) decides upon the knowledge level of a student. 

Figure 1  System Architecture 
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EA has as main goal to (re)evaluate the exercises’ levels of difficulty and thus improve 
system's adaptivity. If the initial difficulty level of an exercise has been proved not to be 
the appropriate, after a number of users’ entries, the unit changes the corresponding level. 
This is achieved by a hybrid intelligent system that uses the combination of an expert 
system and a genetic algorithm, which takes into account the interactions of the students 
with the system. 

The IU consists of two intelligent systems. The one is an expert systems (SES) and 
deals with student evaluation. The other, the Hybrid Intelligent System (HIS), deals with 
adaptation of questions/exercises, which are stored in EDB. 
 
 

3   Domain knowledge 
 
The domain knowledge of the system, at the moment, concerns fundamental aspects of 
knowledge representation. Domain knowledge is structured in a tree-like way. The root 
of the tree is the above subject. The subject is divided in sections and the sections into 
sub-sections. Each sub-section deals with a number of concepts, which are the leaves of 
the tree. Subsections may have common concepts. 

The domain knowledge tree, described above, is displayed as far as the subsections 
level at the navigation area, at the left side of the user interface. From that tree the student 
can choose a learning goal (subsection). Each subsection corresponds to a learning page, 
which is an asp page. That is, only subsections correspond to displayable material. The 
learning page of the selected subsection is currently presented in the content area. Each 
learning page deals with a number of concepts. More specifically, it contains an ordered 
list of concepts. Each concept is linked to the corresponding concept page. Concept pages 
constitute the real teaching material. 

The teaching material, apart from concept pages, however, includes all the available 
questions/exercises, which are stored in the exercises database (EDB) (see Fig. 1) and are 
used for the creation of the tests. EDB also contains the user interaction data for each 
learning page, used for exercises difficulty level adaptation (see Section 7). Each learning 
page is associated with a learning test. Each test consists of a number of exercises that 
refer to the concepts of the associated learning page. An exercise may be a multiple 
choice question or something more complex (e.g. to apply a process). Also, each concept 
page offers a test concerning the concept. 
 
 

4   Learning process 
 
The learning method (implicitly followed) is based on the traditional theory-examples-
exercises paradigm (although the user can follow his own method). That is, for each 
topic, the theory is first presented. Then, some examples are given. Finally, the student is 
called to do some exercises. Theory consists in presenting a number of concepts. Those 
concepts are presented in a simple-to-complex way. That is, the simple concepts are 
presented first and the complex concepts (that require the knowledge of one or more 
simpler concepts) are presented afterwards. This is depicted in the ordered list. 

Furthermore, the student can review a previous concept at any time. He/She is also not 
forced to follow the system’s way of teaching, but can make his/her own choices for 
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studying a learning page. For example he can jump to complex concepts without taking a 
look at simpler ones. In many concept pages there are links to other concepts that are 
prerequisite to the concept of the page. So, the student, if needed, can recall the theory 
about the prerequisite concepts. After having looked at the recalled theory, he/she can 
return back to where he/she was before and go on with his/her studying. 

The student can check his/her knowledge level after having studied a learning page, by 
doing the test specified at the end that page. Any time a student has finished the study of 
a particular learning page, he/she can take an appropriate test. The questions of the test 
are presented one at a time. The student can answer each question independently and in 
his own sequence. In case the student gives a wrong answer to a question, he/she can try 
again. Before that, he/she may either see a hint or the correct answer. Doing any of those, 
the mark that will be assigned to the student for that question is affected. The systems 
collects from each user the number of hints  for each exercise, the total time that he/she 
spent to answer it correctly and the number of tries. Each exercise’s difficulty level is 
determined by all the above information and the nature of corresponding concept 
according to tutors’ experience.  
 
 
5   Exercises management  
 
The system offers to the tutor the capability of domain knowledge and exercise 
management. The tutor can deal with management of the domain tree and the teaching 
material (learning pages, concept pages, questions/exercises and tests). Management of 
the domain tree concerns the insertion, deletion or change of a sub-tree of the domain 
tree. The tutor can insert a new sub-tree at any level of the tree (chapter-sections-
subsections-concepts, section-subsections-concepts or subsection-concepts) or delete an 
existing sub-tree at any level or modify one. In other words, the tutor can change the 
domain knowledge tree at any time according to his/her teaching needs. 

The most important part of teaching material management is the management of the 
questions/exercises. An exercise is considered as a structured object that consists of the 
following parts:  
• its name 
• its body 
• the concept it concerns 
• its difficulty level (1-5), 
• its possible answers (1 to 4) 
• one or more hints 
Every possible answer is assigned a mark and an explanation. The mark represents the 

student's expected mastery degree upon the concept, if the corresponding answer is 
selected. An explanation provides information about why the corresponding answer is 
wrong or right. The hint is a kind of clue to help a student to answer the question 
correctly, or to find the appropriate concept to study again.  

The tutor is able to insert, delete or modify all the parts contained in a question. To 
insert a new question the tutor has to select the corresponding form (tutors’ area). In that 
form the tutor has to fill in all the above mentioned parts of the question. Every question 
inserted is referred to one of the existing concepts. The tutor has to know the chapter, the 
section and the subsection that concept belongs to. Questions that refer to the same 
concept may have different difficulty levels. 
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To delete a question, the tutor has to select the corresponding question and then click a 
delete button. Modification of a question requires first the selection of the question. Then 
the tutor can update any part of the question. For example, the tutor can add a new 
possible answer or remove one or modify existing ones. Also, the tutor can see all the 
questions and all information concerning them.  

Another facility that is available to the tutor is the management of tests. All available 
tests can be shown in a list. The content of each test can be displayed by selecting the 
test's name. In case that the tutor wants to delete one or more tests, he/she can check them 
in the list and then click the delete button. To create a new test, the tutor has first to give a 
name for this test. Then, through an appropriate form, he/she selects the chapter, the 
section, the subsection and the concept as well as the difficulty level and number of the 
questions that are going to be inserted in the test. Questions that satisfy the above criteria 
are randomly selected and then inserted in the test. The tutor can add as many questions 
as he/she wishes, following the same procedure. 

In the corresponding form some boxes are filled in an automated way. Every time the 
tutor selects a chapter, the sections contained in that chapter are shown. Also, for each 
selected section, its subsections are automatically recalled and shown. 

Finally, new concept and learning pages can be added to or deleted form the system. 
Also, the tutor can modify existing pages. 
 
 
6   Student evaluation 
 
In web-based educational systems, one of the most important functions is adaptation. 
Adaptation has mainly to do with the learning content presented to the user. One of the 
most important functions of an adaptive system, which is crucial for the specification of 
the appropriate learning content, is student evaluation. Student evaluation refers to the 
evaluation of the knowledge level of a student after having dealt with a learning page. In 
other words, how well a student has learnt the concepts of a learning page.  

This is achieved by processing the results of the exercises offered at the end of a 
learning page. Student evaluation is important for both the student and the tutor. A 
student can be evaluated at two levels: (a) the concept-level and (b) the topic-level. The 
concept-level evaluation deals with the level of understanding of the concepts of a 
learning page test, whereas the topic-level evaluation deals with the level of 
understanding of the topic of a learning page, i.e. the test as a whole. The knowledge 
level of a student, as far as both a concept and a topic are concerned, is classified in one 
of the following five categories: (a) excellent, (b) very good, (c) good, (d) average and (e) 
low.  

In AITS, student evaluation is achieved with the help of a rule-based expert system 
(SES), which is part of IU (see Fig. 1). The test results are passed to the SES, which 
decides about the knowledge levels of the students for the associated concepts. Details of 
this process are presented in (Hatzilygeroudis et al, 2005a) (an alternative process is 
presented in (Hatzilygeroudis et al, 2005b)).  
 
 
7   Exercises adaptation 
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Estimation of the knowledge level of a concept is based, among others, on the difficulty 
level of the correctly answered exercises included in the test. So, the right determination 
of the difficulty level of an exercise is important. This is mainly done by the tutor. The 
tutor specifies the difficulty level of each exercise, based on the complexity of the 
exercise and his/her experience. Exercises are classified in five levels of difficulty (1 to 
5). However, classification of exercises made by the tutor is not always correct. This may 
lead to incorrect knowledge level estimations. Also, he/she doesn’t (or it is difficult to) 
take into account any feedback from the students.  
 
Figure 2  The Hybrid Intelligent System Structure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In AITS, the difficulty levels of the exercises can be (re)evaluated based on the 
performance of the students. The tutor can use an optional tool to (re)evaluate the 
difficulty levels of all the exercises in the database using a single button in tutors’ 
interface. This is achieved by EA unit and HIS. The EA unit calls HIS to do the main 
work. 
 
7.1 The hybrid intelligent system 
 
HIS consist of three components: the Rule Base (RB), the JESS Inference Engine (IE) 
and the Genetic Algorithm (GA) Module (see Figure 2). The RB contains a number of 
rules that are used for the evaluation of the difficulty levels of the exercises. The JESS IE 
is the inference mechanism that applies the rules and produces the new difficulty levels. 
Finally, the GA Module update the rules in the RB based on a genetic algorithm and the 
data collected from the interactions of the students with the system as far as exercises are 
concerned. This process is depicted in Figure 3 and explained in the next subsection in 
some detail. 

The RB and JESS IE constitute the Exercises Expert System (EES). EES is 
implemented in the Jess, a Java based expert systems shell (Friedman-Hill, 2003).  
 
7.2 The adaptation process 
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Initially, the tutor sets the difficulty levels of the exercises (integers between 1 and 5), 
based on the nature of the exercises and his/her experience. Alongside the difficulty level, 
the tutor also gives a range of difficulty for each exercise, i.e. the minimum and 
maximum possible difficulty that can be assigned to the exercise.  

 
Figure 3  The process of exercises adaptation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

At the same time, the tutor is called to give a number of initial rules. Those rules 
represent the way the tutor would estimate the difficulty levels of the exercises based on 
available data from students’ interaction with the system. In other words, those rules are 
an explicit representation of what the tutor implicitly (or intuitively) does based on 
his/her experience. There are two reasons for doing that, a technical and an educational. 
On the one hand, the GA Module needs an initial rule base to produce an updated one. 
On the other hand, the initial rules can be used to specify the difficulty levels of the 
exercises after having a number of student data during a testing phase. 

That data includes information about the number of tries the students did, the number of 
hints they used, the time they spent and whether their answer was correct or not for each 
exercise. In the above, by “number” we mean the average value of the corresponding 
parameter.  

All the above are done in an off-line mode. During the use of the system, when a 
sufficient amount of data has been gathered, the system proposes to the tutor to trigger 
the process for the exercises (re-)adaptation. If accepted by the Tutor, the GA Module 
takes over. The GA module uses a GA approach to evolve an updated rule base from the 
old one, based on the students’ interaction data. How this is done is described in the next 
subsection. 
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After that, the updated rule base is used via the JESS IE to specify the new difficulty 
levels, if any, and produce the updated exercises. The process can be repeated every time 
an adequate number of students have used the exercises under consideration. 

Let’s look at the following example. The tutor inserts some new exercises with 
difficulty level 2. According to his/her experience he/she initially creates a rule (in the 
initial rule base) that gives this difficulty level to an exercise when a student needs 
between 2 and 5 minutes to answer it, having used one or no hints and having made 2 or 
less tries. Additionally, the tutor gives the minimum and the maximum difficulty level 
values for each exercise. After the use of the system for a sufficient period the system 
uses the data from the interactions of all the students that have tried to answer those 
exercises and evolves a new rule (with the use of GA module). The system compares the 
initial with the evolved rule and if the new rule is different from the initial one, because, 
for example, the mean time that the students needed to answer the exercise was 
significantly over 5 minutes, the new rule is inserted in the updated rule base. Then the 
difficulty levels of the exercises are re-evaluated and may change. If a proposed new 
level is greater than the specified maximum value, the adapted value will become equal 
to the maximum one. Similarly, if a proposed new level is less than the specified 
minimum value, the adapted value will become equal to the minimum one. Those limits 
assure that difficulty levels do not solely depend on the background and skills of the 
students at some period. So, a group with lower/higher background and skills would not 
affect in a free way, but in a controlled one. 
 
Figure 4   Structure of the GA Module 

 
 
 
 
 
 
 
 
 

This kind of adaptation takes into account the tutors’ expertise as well as the students’ 
feedback. Thus, difficulty levels are adapted to both factors, the tutor and the students. 
The tutor is able to see the proposed changes.  
 
7.3 The GA module 
 
The basic structure of the GA module is depicted in Figure 4. The GA Module consists of 
the GA and the rules update unit (RUU).  

GAs, in general, operate on binary string structures, analogous to biological creatures 
(genomes). These structures are evolving in time according to the rule of survival of the 
fittest, by using a randomized, yet structured, information exchange scheme. Thus, in 
every generation, a new set of binary strings is created, using parts of the fittest members 
of the old set (Mitchel, 1996; Michalewitcz, 1999). GAs process a binary coding of the 
parameter space and work on it. This coding (which is an essential part of the GA design 
procedure) results in formation of binary strings. 
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Figure 5  The structure of the genome 

 
 
 
 
 
 
 
 
 
 
 

Figure 6   The Genetic Algorithm 
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interval. Each parameter is coded into a binary string using 31 bits (see Figure 5). Each 
such binary string constitutes a gene of the genome of the GA. Thus, the length of the 
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The steps of the GA are presented in Figure 6. The genetic algorithm used is a classical 
one. The initial population is generated using a set of random binary strings (genomes). 
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The objective function estimates the goodness (fitness) of each individual (genome) in 
the population. The fitness of each individual is based on how many student interaction 
patterns it can satisfy. A student interaction pattern has the following structure, 

<time  tries  hints  level> 
that represents how much time the student spent on an exercise, how many tries he did, 
how many hints he asked for and what was the difficulty level of the exercise. A pattern 
is satisfied if ‘time’ belongs to [T1, T2], ‘tries’ belongs to [E1, E2] and ‘hints’ belongs to 
[H1, H2]. More specifically, the fitness of a genome is specified by the algorithm in Fig. 
7. GA applies successively to student patterns referring to exercises with difficulty level 
1, 2, …, 5. 
 
Figure 7   Algorithm for fitness computation 

 
 

The termination criterion is the number of generations, that is, the evolution procedure 
is terminated when a specific number of generations (in our case 10) are completed. 
While the termination criterion is not met, the whole evolution procedure is taking place 
for the current population, that is, selection, crossover and mutation are performed 
(Mitchel, 1996). When the termination criterion is met, GA evolution procedure is 
terminated. Then, the best individual of the resulted population for the corresponding 
difficulty level is selected, let it be <T1*, T2*, E1*, E2*, H1*, H2*>. This represents the 
shortest possible intervals for time, tries and hints for the specific difficulty level that 
satisfy most of the student interaction patterns. This can be translated into a rule of the 
form 
 
 
 
 
 
 
where ‘levelx’ is the difficulty level the student patterns refer to. 

The RUU compares each such produced rule with the corresponding existing rule 
(provided by the Tutor) and decides on whether and how the existing rule will be 
modified. After that it updates the rule base. 

for each student interaction pattern do
 fitness = 0; 
 for each genome do 
 if T1<time 

then fitness = fitness + 1; 
 if T2>time 

then fitness =fitness + 1; 
 if (T1<time) and (T2>time) 

then fitness = fitness + 1/(T2-T1); 
 if (E1<tries) and (E2>tries) 

then fitness = fitness + 1/(E2-E1); 
 if (H1<hints) and (H2>hints) 

then fitness = fitness + 1/(H2-H1); 

if (T1*<= time <= T2*) and
    (E1*<= tries <=E2*) and
    (H1*<= hints <=H2*) 
then difficulty_level = levelx
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Finally, the updated rule base is used to calculate the new difficulty levels of each 
exercise that will be further available in the updated exercise database. In doing that, the 
average values of the parameters of the student patterns related to a difficulty level are 
used. 
 
 
7.4 Exercises statistics 
 
The system also provides a number of statistics related to the exercises. Those statistical 
results are very helpful for new exercise entries and after the end of each semester for 
curriculum adaptation according to the total students performance. 

The statistics provided to the tutor are the following: 
• the total number of the students for each exercise that answered it correctly 
• the percentage of the correct initial exercise classifications  
• the percentage of the modified exercises classifications 
• the final total number of exercises per difficulty level per concept 
• the students’ performance according to the exercise difficulty levels 

Thus, the system provides to the tutor a useful tool to check the quality of each exercise 
that he/she has inserted into the system and each test that he/she has designed for student 
evaluation. Using that information the new exercises will be better classified by the tutor 
and thus better helping students at every part of the educational context, because the 
exercise material has been adapted to their needs.  
 
 
7.5 Experimentation 
 
We applied the above process to students’ data from the current academic year. We 
performed a two-phase experiment to evaluate our proposal. Initially, 40 students used 
the system and dealt with the questions/exercises. We used a set of 36 multiple-choice 
questions of all levels of difficulty. The students were instructed to answer the questions 
following some guidelines, like: be concentrated, don’t waste time for resting, don’t use 
the hints when not necessary, don’t answer questions simply by chance. 

The initial rules set by the tutor are presented in Table 1. They are relatively simple 
rules used as a basis for adaptation of difficulty levels. 

The rules resulted from the GA are presented in Table 2. Notice that no rules are the 
same. The differences concern all three parameters, but mainly the mean time spent at 
each category of exercises. 

In the second phase, the same set of exercises was used under the same conditions by a 
second group of 20 students, after adaptation of their difficulty levels based on the rules 
of Table 2. The rules resulted from the GA are presented in Table 3. Notice that only the 
rules concerning categories (levels) 4 and 5 have been differentiated as far as the number 
of hints (level 4) and the time spent (both levels) are concerned.  

Given the above results, 27 out of 36 questions/exercises had to change their difficulty 
levels values, after the first phase. After the second phase, only 6 out of 36 questions had 
to change level values.  
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This two-phase experiment constitutes a kind of a proof for our method validity. 
Indeed, given the changes made to the difficulty levels after the first phase (Table 2), the 
changes resulted after the second phase (Table 3) were very limited. This means that the 
difficulty levels were realistically specified after the first phase. 
 
Table 1  Tutor’s rules for difficulty level determination 
 

A/A Tries Hints Time 
(min) 

Difficulty 
Level 

1 <= 2 1 < 2 1 
2 <= 2 1 < 3 2 
3 <= 2 <=2 < 4 3 
4 <= 2 <=2 < 5 4 
5 <= 3 1 < 5 4 
6 <= 2 <=2 > 5 5 
7 <= 3 1 > 5 5 

 
 

Table 2   Rules resulted from the 1st application of GA. 
 

A/A Tries Hints Time 
(min) 

Difficulty 
Level 

1 <= 1 0 <= 0,5 1 
2 <= 1 0 <  1 2 
3 <= 1 0 < 2 3 
4 <= 2 <=2 2 - 4 4 
5 <= 2 <=2 > 4 5 

 
 
Table 3   Rules resulted from the 2nd application of GA 
 

A/A Tries Hints Time 
(min) 

Difficulty 
Level 

1 <= 1 0 <= 0,5 1 
2 <= 1 0 <  1 2 
3 <= 1 0 < 2 3 
4 <= 2 <=1 2 - 3 4 
5 <= 2 <=2 > 3 5 

 
 

A problem here is the following. Given that we choose the best individual each time, 
we can have only one rule for each difficulty level. This is not realistic, since it cannot 
cover all cases. Another problem following the previous one is, given that the new rules 
should replace some of the old ones, which rules of Table 1 will be replaced. This is easy 
in cases where one rule exists for a difficulty level in Table 1 (e.g. rule 1). Also, it is easy 
in the cases like that of level 5. Rule 5 in Table 2 will replace rule 6 in Table 1 (because it 
is clear that they are closer). However, in the case of level 4 it is difficult to choose. At 
the moment we choose one of them in random. However, a more sophisticated solution is 
needed at this point, which is a function of the RUU. 
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Another point, which is worth of mentioning, is the fact that the rules may not be te 
same for all same level questions. For example, multiple-choice questions usually take 
less time than questions that refer to application of a process, although they can be of the 
same difficulty. So, different rules are needed for different types of questions for the 
same difficulty level. 
 
 
8 Implementation issues 
 
The developed system is web-based, so it works only through the WWW and cannot be 
downloaded and function at the student's computer. It is implemented in ASP. By using 
ASP, we’ve added a dynamic functionality to the system, which gives it the ability to 
interact with the student and the tutor. Usage of ASP can cause no problems in the 
communication with the database, which was built with MYSQL. 

Another important implementation issue was that of the EES, used for exercises 
adaptation. EES is implemented in Jess, an expert system cell implemented in Java 
(Friedman-Hill, 2003). After a student has finished a test, a fact for each individual 
question of the test is saved in a file. Then SES, which is also implemented in Jess, is 
called to evaluate the student’s knowledge levels. Additionally, each time that the tutor 
triggers the exercise adaptation procedure, HIS is called to re-evaluate the difficulty 
levels of the exercises. This is achieved with the help of the appropriate ASP commands 
that give the opportunity of executing a command line program. The expert systems, after 
taking the facts from a text file, return the results in another text file. 

The type of GA used in the EC module of HES is the classic simple GA (Vose, 1998). 
The representation used for the genomes of the genetic population is the classic binary 
string. As far as the reproduction operator is concerned, the classic biased roulette wheel 
selection is used. The crossover operator used is uniform crossover (with crossover 
probability equal to 0.9), while the mutation operator is the flip mutator (with mutation 
probability equal to 0.001). Except of that, the size of the population is set to 50 while the 
GA uses linear scaling and elitism (Gen and Cheng, 1997).  

The GA is implemented using the C++ Library of Genetic Algorithms GAlib 
(http://lancet.mit.edu/ga/) and especially the GASimpleGA class for the implementation 
of the GA (non-overlapping populations) and the GABin2DecGenome class for the 
binary string genomes (an implementation of the traditional method for converting binary 
strings to decimal values). All the experiments were carried out on an Intel Pentium IV 
2.7GHz PC with 256 MB RAM. 
 
 
9 Conclusion and discussion 
 
In this paper, we present an intelligent and adaptive web-based education system 
enhanced with e-learning system facilities. We concentrate on the determination of the 
difficulty levels of the questions/exercises provided to the students for testing purposes. 
A hybrid AI approach is used to achieve that, by taking into account the feedback from 
the interactions of the students with the system. Two intelligent components work on- 
and off-line to improve the exercises, which have been inserted in the system by the 
tutors, aiming at the best possible educational result in the wide area of AI education in 
our Department.  
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More specifically, a combination of the expert systems approach and a genetic 
algorithm approach is used. A genetic algorithm is used to extract some kind of rules 
from the data acquired from the interaction of the students with the system when 
answering to questions/exercises. These rules are used to modify expert rules provided by 
the Tutor. In this way, feedback from the students is taken into account for determination 
of the difficulty levels of the questions/exercises. This is important because the difficulty 
levels of the exercises are taken into account for the evaluation of the knowledge levels 
of the students with regards to various concepts. Experimental results show that a 
significant part of questions/exercises may need to change their level of difficulty. 

This facility can be exploited in various ways by the tutor:  
• A more realistic classification of the questions/exercises can be achieved. This 

may have a positive impact on students’ learning.  
• It could be easily extended to be used for a personalized adaptation of the 

difficulty levels (i.e. adaptation to each student individually).  
• The tutor can use it to specify the difficulty levels of various types of quite 

similar questions/exercises during a training period and use the resulted levels 
for questions of the same type.  

• The tutor can re-estimate those levels from time to time. 
• A careful study of the proposed changes by the system can result in useful ideas 

for improving the questions/exercises and/or the teaching material. 
Apart from the above, the system provides useful statistics related to the exercises. 

Thus, it integrates facilities met in e-learning systems. This can also provide useful 
information for curriculum improvement. 

However, there are some points that the system can be improved at. First, the extraction 
of rules via the GA is fairly simple at the moment. For example, we always choose the 
best (fittest) individual at the end of the process. Thus, we produce only one rule for 
classifying each difficulty level. This may be adequate, if it satisfies a large percentage 
(how much?) of the student interaction patterns, otherwise may not and needs 
improvement. One solution would be then not to rely only on the best individual, but to 
the second and possibly the third better individual, depending on the pattern satisfaction 
percentages or more sophisticated metrics. Alternatively, we could use more than one 
best individual taken from different runs of the algorithm, if there are different such 
individuals. This is a direction for further research. 

Given that, for example, time limits are not really clear-cuts, another direction for 
further work could be the use of Fuzzy Logic in our expert system component to produce 
more realistic adaptation as well as to provide personalized adaptivity facilities. 
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