

Published in the International Journal of AI Tools 5(4) (1996) 403-446.

 Copyright World Scientific Pub 1996. All rights reserved.

SILO: INTEGRATING LOGIC IN OBJECTS
FOR KNOWLEDGE REPRESENTATION AND REASONING

IOANNIS HATZILYGEROUDIS
University of Patras, School of Engineering, Dept of Computer Engineering & Informatics

26500 Patras, Greece
&

Computer Technology Institute (CTI), P.O. Box 1122, 26110 Patras, Greece

email: ihatz@cti.gr
fax: +30-61-991909

ABSTRACT
There have been a large number of systems that integrate logic and objects (frames or
classes) for knowledge representation and reasoning. Most of those systems give pre-
eminence to logic and their objects lack the structure of frames. These choices imply a
number of disadvantages, as the inability to represent exceptions and perform default
reasoning, and the reduction in the naturalness of representation. In this paper, aspects of
knowledge representation and reasoning in SILO, a system integrating logic in objects, are
presented. SILO gives pre-eminence to objects. A SILO object comprises elements from both
frames and classes. A kind of many-sorted logic is used to express object internal
knowledge. Message passing, alongside inheritance, plays a significant role in the reasoning
process. Control knowledge, concerning both deduction and inheritance, is separately and
explicitly represented via definitions of certain functions, called meta-functions.

Keywords: logic, frames, classes, knowledge representation, hybrid system, meta-level
system.

1. Introduction

Logic-based knowledge representation formalisms, such as first-order logics, are
extensively used for knowledge representation. One of their major advantage is their
really great expressive power: logic can represent incomplete knowledge, such as

negative and disjunctive knowledge [1, 2 Ch.3]. This makes logic very attractive in
building knowledge bases. However, although this is true of small knowledge bases,
it is not of larger ones. Knowledge bases written in a logic are just flat sets of
propositions, with no structure, while larger knowledge bases require a structured
way of representing knowledge. Since this feature is not offered by plain logics,
developing and maintaining a relatively large logical knowledge base becomes a
difficult task. Also, due to their increased expressive power, logic-based
representation languages often have efficiency problems.

On the other hand, object-based formalisms, such as frame-based and class-
based representations, have been successfully used in constructing even large
knowledge bases. Their main advantage, compared to logic-based formalisms, is
that they offer a structured way of representing knowledge. Furthermore, the
structure of an object-based knowledge base corresponds to the structure of the
represented real world [2 Ch.6]. This makes development and maintenance of
knowledge bases easier and faster. Finally, object-based languages offer quite
efficient implementations.

So, it seems that logic-based and object-based representations are, in some
sense, complementary; logic has its drawbacks as a knowledge representation
formalism in exactly those aspects where object-based representations are strong,
and vice versa. Given this complementarity, it seems promising to combine logic
and objects into a single system.

There have been a large number of attempts at combining logic and objects (see
Section 9 for an account). Most of the efforts give pre-eminence to a logical
framework, that is notions from object-based representations are somehow
incorporated within or expressed via logic, and consider the combination from the
programming point of view rather than that of knowledge representation. This,
however, may lead to any of the following shortcomings: a) poor concept
specialisation capabilities, often including inability to represent exceptions and
perform default reasoning, and b) reduction in the naturalness of the object-based
representation, since logically defined objects do not really impose any structure to
the domain knowledge. Also, most of the systems combine either logic and classes
or logic and frames, but not logic and a suitable combination of frames and classes
that exploits their strong points.

Finally, an issue not paid much attention, hence not addressed by existing
combinations, is the flexibility that a knowledge representation model should
provide as far as control knowledge is concerned. This flexibility is important,
especially in implementing expert systems, since a single control regime is usually
not adequate [1].

In this paper, the main aspects of knowledge representation and reasoning in
SILO, a System Integrating Logic in Objects, are presented. SILO is a general
purpose hybrid knowledge representation system/language that uses a first-order
logic within an object-based framework. Its objects are composed of elements taken
from both frame-based and class-based formalisms. SILO also allows user to specify
its own inference controls.

The outline of the paper is as follows. In Section 2, the principles integration is
based on are discussed. In Section 3, the way knowledge is structured in SILO is
presented. In Section 4, the integrated domain knowledge representation language

used to represent object internal knowledge is described. Section 5 deals with
SILO's inheritance mechanism, whereas Section 6 with SILO's reasoning
mechanism. Section 7 is concerned with control knowledge representation in SILO.
Section 8 provides some examples mainly illustrating reasoning in SILO. In Section
9 related work is discussed, and Section 10, finally, concludes.

2. Integration Principles

Three basic aspects can be distinguished in a system integrating logic in objects: the
knowledge structuring model, the knowledge representation formalism and the
control representation model. The knowledge structuring model refers to the local
structure of objects as well as their global organisation. The knowledge
representation formalism deals with representation of the object internal
knowledge. Finally, the control representation model concerns the way control
knowledge is represented and applied. The integration principles discussed in this
section concern all these aspects.

2.1. The object-based model

There are a number of knowledge representation or programming languages that can
be characterised as object-based, such as frame-based, class-based and actor-based
languages [3]. From these formalisms, frame-based and class-based languages are
more closely related, and these are referred to as object-based representations in this
paper. We distinguish three aspects of an object-based representation, namely the
classification model, the object representation and the communication mechanism.
The classification model concerns the global organisation of the objects and their
relations, e.g. the specialisation/inheritance scheme. The object representation
refers to the representation of knowledge within the basic representation unit (an
object) of the language. Finally, the communication mechanism specifies the way
objects can communicate with one another.

Frames and classes have been developed in different environments and for
different purposes, namely knowledge representation and object-oriented
programming respectively. Thus, although they have a number of obvious
similarities, they also have a number of important differences. Frames [2 Ch.6, 3
Ch.8, 4] are more declaratively oriented than classes; a frame has a structure
representing a concept via a number of slots, each of which is further described by a
number of declarative facets; a slot may hold a value or be attached local
procedures, by means of procedural facets, like the if-needed, if-added and if-
removed facets, activated on slot access. This is called procedural attachment.
Classes [3 Ch.2, 5], on the other hand, are more procedurally oriented; a class
represents a concept by means of a number of procedures, called methods, that
specify its behaviour. Methods operate on data stored in variables, called state
variables, that constitute an object's state. Both frames and classes are organised in
a hierarchy, where objects lower down can inherit knowledge from objects higher
up. A frame-based hierarchy model is more flexible compared to a class-based one,
since the former is based on the prototype theory and the latter on the set theory [3
Ch.7]. Thus, there is a strict distinction between a class object (data structure) and

an instance object in a class-based model. An instance cannot differentiate its
behaviour (methods) from that of its class; instances of the same class have the same
behaviour, but different states. On the contrary, any subframe can differentiate itself
from its superframe by having extra slots; also, incomplete frames, that is frames
not having values for all of their slots, are allowed at any level in the hierarchy.
Classes possess a strong communication mechanism between objects, namely
message passing (or sending), whereas frames are more autonomous units. Sending
a message results in activation of a method, with the arguments conveyed in the
message.

We can describe the above two types of object-based representations by the
following equations:

 class-based model = set theory based hierarchy +
 procedural object representation +
 message passing +
 inheritance

 frame-based model = prototype theory based hierarchy +
 declarative object representation +
 procedural attachments +
 inheritance

The main issue here is which elements useful for knowledge representation and

reasoning should be taken from frames and which from classes to constitute the
object-based model in the integration. To this end, two fundamental elements, one
from frames and the other from classes, are employed in the proposed model. The
first is the declarative and more expressive structure of a frame. The second
fundamental element is message passing, used in classes, by which pieces of
knowledge sited in different objects can be interrelated in a way that can play a
significant role in reasoning, since computation of the value of a slot may require
use of knowledge belonging to other objects.

From the procedural facets, used in frames, only the if-needed facets are
embedded in the model. The other types of procedural facets (i.e. if-added, if-
removed facets) are not employed in our model. As a consequence, objects have not
a state that can be changed during the course of computation (immutable objects).
Actually, the notion of if-needed procedures is extended to that of methods, used in
classes.

Finally, the specialisation hierarchy relies on a restricted prototype theory and
supports multiple inheritance. There is a distinction between classes and instances,
but it is not as sharp as in a class-based model. A subclass of a class can have new
slots defined in it. An instance can only have new values of slots that substitute for
those in its class(es), but not new slots defined in it and cannot be further
specialised. This kind of relation is more flexible than the instantiation relation,
used in class-based models, but a bit less flexible than that used in frame-based
models, where it allows for new slots to be defined in an instance frame as well.
However, this restricted specialisation better fits our intuitions about an instance,
thus preventing from unintuitive representations.

The combined object-based model can be represented by the following equation:
 object-based model = restricted prototype theory based hierarchy +
 declarative object representation +
 message passing +
 inheritance

2.2. The logic-based model

So far, first-order predicate calculus (FOPC) is the most widely used logic-based
knowledge representation formalism [6]. Higher order logics are difficult to handle,
whereas lower order logics, such as those based on propositional calculus, are
expressively very poor. There are also subsets of FOPC, such as Horn-type logics,
that are simpler, offer greater efficiency than FOPC, but reduced expressiveness.
Apart from its expressiveness, another advantage of FOPC, and of any other logic,
is that it comes with a clear and theoretically sound semantics, namely declarative
semantics.

Any logic is also accompanied by a proof procedure for deriving new
propositions from a set of already existing propositions. The proof procedure
constitutes the operational semantics of a logic-based language and is typically
sound and complete. A proof procedure uses one or more inference rules. The most
powerful inference rule is resolution principle with its associated proof procedure,
namely resolution refutation. Resolution requires that clausal form of FOPC is used.
The above logic-based representation model can be described by the following
equation:

logic-based model = FOPC clauses + resolution refutation

Recently, first-order many-sorted logics (MSLs) have been paid much attention

[7, 8]. A MSL is composed of two integrated components, one for the description of
the signature(s) and the other logic-based. The description of a signature consists of
declarations of the sortal relations between concepts (objects) organised in a lattice-
type graph and declarations of the types of the arguments of the predicates used in
the logic-based component. Under simple restrictions, a hierarchy of objects
(concepts) can be regarded as a lattice-type graph and the arguments type
declarations as concepts structural descriptions, so that an MSL-like language can
be used for the description of the object internal knowledge. Use of an MSL-based
language brings two main advantages. First, it results in simpler (shorter)
expressions than unsorted logic, which results in conciseness of representation
within an object. Second, the size of the search space for proofs is significantly
decreased, thus improving efficiency [7]. The logic-based model used in SILO can
be finally described by the following equation:

logic-based model = first-order sorted clauses + sorted resolution refutation

2.3. The integrated model

There are two ways to combine logic and objects into a unified formalism. The first
suggests incorporation of object-based notions within a logical framework. This
means that the logic-based formalism is (syntactically) extended by new constructs
to be able to incorporate notions such as object definition, object classification,
message passing etc. This is the way followed by most of the systems that are
extensions of the logic programming paradigm, particularly those of Prolog
programming, where at the implementational level everything is translated into
logical expressions. Thus, a knowledge base remains a flat set of logical
expressions. Also, deduction related processes, such as resolution refutation and
unification, actually remain unchanged, although operational semantics may be
superficially extended.

The second way, followed in SILO, consists in using logic within objects. In this
way, logic is used to express object internal knowledge, but not the hierarchical
(inheritance/specialisation) relations between objects. Each object is a structured
unit, implemented as a separate data structure, that contains the knowledge about
itself, mainly expressed as logical expressions. Also, the proof procedure is a tight
integration of message passing, inheritance and logical deduction. In this fashion,
message passing to an object is regarded as a theorem proving request from the
theory (knowledge) related to the object.

A weak point of logic is its great difficulty or inability to efficiently represent
purely procedural knowledge. Therefore, our integrated model supports a kind of
procedural attachment.

The integrated model used in SILO can be described by the following equation:

 integrated model = restricted prototype theory based hierarchy +
 sorted logic-based object representation +
 procedural attachment +
 sorted resolution refutation +
 message passing +
 inheritance

Our main aim here is the design of an implementable system that gives pre-

eminence to objects, thus we are not concerned with issues like soundness and
completeness, which should be of main concern in systems the are based on or give
pre-eminence to logic. Although soundness and completeness may be desired
attributes of an inference system, they often result in restricting its representational
flexibility.

CommonLisp [9] is a language suitable for implementing systems like SILO,
since it facilitates creation of named data structures with named components for
representing objects. Since CommonLisp is the intended implementation language, a
Lisp-oriented notation and terminology is used throughout the paper.

2.4. The control model

The advantages of explicit and separate representation of control knowledge have
been pointed out by a number of researchers, e.g. [10, 1]. The most well-known and
advantageous architecture for implementing such a separation is that offered by

meta-level systems [11]. This type of architecture provides a separate object-level
and meta-level interpreter. Object-level interpreter reasons about domain
knowledge, whereas meta-level interpreter reasons about how to use domain
knowledge. A main problem with meta-level systems is the meta-level overhead: the
increase in computing cost per object-level step, due to the corresponding meta-
level steps, often exceeds the computational gain due to the reduction of the number
of the object-level steps.

A kind of a meta-level architecture based on a partial reflection between object-
level and meta-level is adopted in SILO. This approach suggests a partial reflection
via a set of programmable steps in the object-level computational cycle. At certain
steps in the object-level cycle, the system reflects at the meta-level to make
decisions about the inference strategy used at the object-level. This kind of
architecture achieves a satisfactory balance between flexibility and efficiency [11].

Programmable steps are implemented in SILO as user-definable functions, called
meta-functions (for an extensive treatment see [12]). Thus, by (re)defining a number
of meta-functions the user can specify a variety of control strategies or heuristics.

3. Knowledge Structuring Model

3.1. Object structure

In common with most object-based languages, objects in SILO are organised in a
hierarchy based on an acyclic directed graph model which allows for multiple
parents, with the object object as its root (see e.g. Fig. 2). Each object
corresponds to a concept in the domain described via a number of attributes which
constitute its conceptual structure. Attributes correspond to state variables of classes
or to slots of frames.

The (internal) structure of an object in SILO is depicted in Fig. 1. It consists of
three parts: structure-part, knowledge-part and control-part. The structure-part of an
object accommodates structural knowledge related to the object. It consists of two
components. The first, links, accommodates taxonomic knowledge related to the
object, that is knowledge about its hierarchical relations with other objects. The
second, attributes, corresponds to declarative facets of frames by including
descriptions of the attributes of the object in terms of restrictions on their values.
The knowledge-part of an object includes knowledge related to the values of its
attributes. It consists of two components. The first, axioms, includes knowledge
about the object expressed in a declarative way. This knowledge is distinguished in
facts, expressed by slot-axioms that correspond to variable-value pairs of classes or
slot-value pairs of frames, and in non-factual knowledge, expressed by method-
axioms (see Section 4.3). The second component, procedures, includes non-factual
knowledge expressed in a procedural way. Method-axioms and procedures
correspond to methods of classes or to if-needed procedures of frames. While the
structure-part and the knowledge-part of an object concern domain knowledge, its
control-part concerns control knowledge, that is knowledge about how to use
domain knowledge, often called meta-knowledge [13, 11]. It consists of two
components, namely deduction-control and inheritance-control. The first
component is responsible for controlling the deduction process within the context of

the object, e.g. the search strategy to be followed. The second is responsible for
controlling the inheritance mechanism, e.g. the inheritance path to be followed.

structure-part
links
attributes

knowledge-part
axioms

control-part
deduction-control
inheritance-control

procedures

Fig. 1. The structure of an object in SILO.

3.2. Objects hierarchy

Two types of an object are distinguished. An instance-object (or instance) contains
knowledge about an individual concept. A class-object (or class) contains
knowledge related to a generic concept. Since the specialisation hierarchy relies on
the prototype theory, this knowledge is default knowledge about the individual
concepts it represents. Each class, except object, is a subclass of one or more
classes higher up, called its superclass(es). There is a link between a class and each
of its subclasses that represents a specialisation/inheritance relation, called a
subclass-of relation (see Fig. 2), whereas the reverse relation is called a superclass-
of relation. This means that a (sub)class can differentiate itself from its
superclass(es), by a number of ways. A subclass can have new attributes defined in
it.

A class can also have instances attached to it, called its local (or own) instances.
Instances are terminal nodes in the hierarchy. Classes that have only instances
attached to them are called terminal classes. There is no terminal class with no
instance attached to it. An instance may belong to more than one class. There is a
link between a class and each of its instances that represents a restricted
specialisation/inheritance relation between them, called an instance-of relation (see
Fig. 2), whereas its reverse relation is called a class-of relation. It is restricted in the
sense that an instance cannot have new attributes defined in it. This means that an
instance has the same conceptual structure as its class(es). Furthermore, instances
cannot be further specialised.

We use Ci and Oi as class symbols and instance symbols respectively, to
represent classes and instances in a hierarchy. We also use "<<" and "<" to
represent the "subclass-of" and the "instance-of" relations respectively. So, C2 <<
C1 means that C2 is a subclass of C1 or equivalently that C1 is a superclass of C2.
The "subclass-of" relation is transitive, that is if C3 << C2 and C2 << C1 then C3 <<

C1. For example, in the hierarchy of Fig. 2, human << mammal and mammal <<
animal, so human << animal. A child (subclass) of a class is called an
immediate subclass of it, whereas a parent (superclass) of a class is called an
immediate superclass. For example, man is an immediate subclass of human, in
contrast to dad-mimic, whereas human is an immediate superclass of man. Also,
O1 < C1 means that O1 is an instance of C1 or equivalently that C1 is a class of O1.
For example, m2 < man, m3 < writer and w2 < woman. Finally, by ICi

 and DCi
 we

represent the sets of local instances and the immediate subclasses of Ci
respectively. For example, Iman = {m2, m3} and Dhuman ={man, writer,
woman}.

object

animal

mammal wild-animal

human

man

m1 m2

subclass-of

instance-of

t1 t2

writer woman

w1 w2

tigerdad-mimic

m3

Fig. 2. A (partial) hierarchy of objects.

Two classes are (declared to be) disjoint if they (should) have no common instances.

For example, in Fig. 1, man and woman are (declared to be) disjoint.

4. Domain Knowledge Representation

The SILO knowledge representation language concerns both domain and control
knowledge. Each SILO expression is an object definition and results in the creation

of an object with a structure like that of Fig. 1. There are two types of an object
definition, namely class definition and instance definition.

A class definition has the format,

 (defclass <class symbol>
 <class-structure-decls>
 <knowledge-decls>
 <control-defs>)

whereas an instance definition the format,

 (definst <instance symbol>
 <inst-structure-decls>
 <knowledge-decls>
 <control-defs>).

In the definitions, <class-structure-decls> and <inst-structure-decls> concern the
structure-part of an object, <knowledge-decls> its knowledge-part and <control-
defs> its control-part. Each of these templates has its own language.

The language for representation of the domain knowledge of an object is an
integration of two component languages. The one, called structure declaring
language (SDL), concerns the structure-part template in an object definition and the
other, called message passing logic (MPL), concerns the knowledge-part template.
The integrated language can be considered as an extended form of a many-sorted
logic. SDL expressions correspond to the description of a signature in a MSL,
whereas MPL corresponds to the logic-based component of a MSL. In the following
subsections, SDL and MPL are presented. The language for the representation of the
control knowledge (control-part) is discussed in Section 7.

4.1. Structure declaring language (SDL)

SDL is used for the description of the structure-part of an object, via the structure-
part template in an object definition:

 <class-structure-decls> ::= <class-link-decls>
 <attribute-decls>
 <definition-decls>

 <inst-structure-decls> ::= <inst-link-decls>
 <attribute-decls>

So, SDL provides three types of declarations, namely link declarations, attribute
declarations and definitional declarations, discussed in the sequel.

4.1.1. Link declarations

The first type of declarations, link declarations, describe the conceptual links of the
object and are stored in 'links'. Link declarations are defined as followsa :

a The symbol * means that there can be zero, one or more occurrences of the expression at its left.

 <class-link-decls> ::= ((<inher-link-decl>*)
 (<disj-link-decl>*))

 <inst-link-decls> ::= ((<inher-link-decl>*))

 <inher-link-decl> ::= class symbol

 <disj-link-decl> ::= class symbol

So, link declarations in a class consists of a number of inheritance link declarations,
that are class symbols representing the immediate superclasses of the class, and a
number of disjointness link declarations, that are also class symbols representing the
classes which are disjoint with the class. Link declarations in an instance consists
only of inheritance link declarations, representing its classes.

4.1.2. Attribute declarations

The second type of declarations, attribute declarations, specify the attributes of an
object and represent restrictions on their values. They are stored in 'attributes'. In
general, an attribute is an n-place attribute (n ≥ 0), that is a value of it is an n-tuple
consisting of n component values. If n=0, it is a degenerate attribute, that is an
attribute with no value. If n=1 the attribute is a simple attribute, otherwise it is a
composite attribute. An attribute is single-valued if it is allowed to take only one n-
tuple as its value, otherwise it is multi-valued. The name of each attribute is unique.

Attribute declarations are defined as follows:

 <attr-decls> ::= (<attr-decl>*)

 <attr-decl> ::= (<type-part> <num-part>)

 <type-part>::= (bn t1 ... tn)

 <num-part>::= (nmin nmax).

As it is clear, an attribute declaration consists of two parts. In the first, called the
type restriction part, bn is an attribute symbol, representing an n-place attribute, and
ti (i = 1...n) are the types of the component values of the attribute. Each ti can be
either a Lisp data-type predicate or a class symbol or an enumeration set. While a
Lisp predicate and a class symbol represent the type of the corresponding
component value by intention, an enumeration set gives it by enumerating all of its
possible values, that is by extenuation. The elements of an enumeration set can be
instance or individual symbols. The most general type is denoted by 'object'. In the
second part, called the number restriction part, nmin and nmax are positive integers
representing the minimum and maximum number respectively of the values (n-
tuples) the attribute is allowed to take. If one of these numbers is to be left
unspecified, which means "unrestricted", an '!' is put in its place. If both numbers
are to be left unspecified, the number restriction part is omitted. Obviously, nmin =
nmax = 1 declares a single-valued attribute.

For example, the attribute declarations ((member human) (2 5)) and
((leader man) (! 1)) in the class small-team denote that, "a small team has
at least two and at most five members that are humans" and "a small team has at

most one leader who must be a man" respectively. Also, ((son man)) and ((sex
(male female)) (1 1)) in human denote that, "a human has a number of sons
that are men" and " a human has a sex which is one of 'male' and 'female' "
respectively.

The type restriction parts of attribute declarations correspond to declarative
facets of a frame-based language or to predicate declarations of a MSL. The number
restriction part is similar to the cardinality facet of a slot used in frame-based
systems [4]. This kind of restriction can also be found in the terminological
component of logic-based hybrid systems, like e.g. BACK [14], as a number
restriction on roles of concepts.

4.1.3. Definitional declarations

The last type of declaration, definitional declarations, represent definitional
specifications for a class-object. Definitional declarations are defined as follows:

 <defin-decls> ::= (<defin-decl>*)
 <defin-decl> ::= (D b1

n1 ... bm
nm)

where D is a built-in definitional primitive and each bi
ni is an attribute symbol.

There are two definitional primitives, 'vess' and 'class'. The first denotes that the
associated attributes are value essential attributes, that is their values are not
allowed to be changed lower down, in contrast to incidental attributes. The second
denotes that they are class attributes, that is attributes referring to the class-object
as a whole, not applicable to its subclasses or instances, in contrast to instance
attributes. Use of class attributes is not discussed in this paper.

Introduction of the distinction between essential and non-essential attributes is
motivated by the issues addressed in [15], concerning the definitional inability of
object-based formalisms. One of the Brachman's points in [15] is that, due to the
fact that most of the object-based formalisms do not distinguish between cancellable
(incidental) and uncancellable (essential) properties, one can in principle create an
instance of a class that overrides all the properties stored in the class. This is not
allowed in SILO. For example, if in a class german-car the attribute 'country-of-
make' holding the value 'germany' is declared as value essential, then it is assured
that there would not be any instance of that class that has a different value for that
attribute.

Also, introduction of the distinction between class and instance attributes
corresponds to the distinction between the own and member slots in frame-based
languages [4 Ch.8, 2 Ch.6]. Class attributes of a class are not inherited by its
subclasses and instances.

4.2. Message passing logic (MPL)

MPL is used for description of the knowledge-part of an object. MPL is a variant of
first-order predicate calculus (FOPC). The template describing the knowledge-part
of an object has the following format:

 <knowledge-decls> ::= <axioms>
 <procs>

 <axioms> ::= (<axiom>*)

 <procs> ::= (<proc-def>*)

where each <axiom> is an MPL formula and each <proc-def> is a procedure
definition associated to the formulas in <axioms> for procedural attachment
purposes (see Section 4.2.2). In the following MPL is presented.

4.2.1. MPL formulas

The primitive structural unit of an MPL formula is an MPL atom, which has the
same format as in FOPC.

Definition 1. (MPL atom) An MPL atomic formula (or atom) is an
expression of the form (pn+1 t1 ... tn to), where pn+1 is an (n+1)-place
predicate symbol (n ≥ 0) and t1,..., tn, to its arguments, that are terms (see
below).

The last argument (to) always denotes an object and is therefore called the object
argument. The predicate symbol pn+1 represents an attribute of the object denoted
by the object argument. Thus, for each n-place attribute there is a homonymous
(n+1)-place predicate and vice versa. In other words, the set of attribute symbols is
identical to that of predicate symbols, except for arity numbers:

∀i, bi
n ≡ pi

n+1.
The arguments t1,..., tn represent component values of the predicate's homonymous
attribute, and are therefore called value arguments. Consequently, attribute
declarations also represent restrictions on the arguments of the predicates. In the
same way as with attributes, we distinguish between single-valued and multi-valued
predicates.

There are three types of non-variable terms in MPL, namely constants, evaluable
terms and procedure terms. A constant is either an instance symbol or an individual
symbol which is member of an enumeration set.

Evaluable terms are divided in two types, namely normal evaluable terms and
typed evaluable terms. A normal evaluable term has the form

!bi
1

(e.g. !son). An evaluable term represents the value(s) of the corresponding simple
attribute. A typed evaluable term has the form

!bi
1:Ci

(e.g. !son:writer). It represents the value(s) of the attribute which are of type Ci.
Introduction of evaluable terms aims only at the conciseness of representation. So,
they are expanded before they are used in a reasoning process (see Section 3.2.4).

Variables are actually typed (or sorted)b variables, that is variables whose range of
values is restricted either explicitly or implicitly. We use vi to represent variable symbols.
In MPL, a variable symbol has '?' as its first character (e.g. ?x). An explicitly typed
variable has the form

vi:Ci

where the class symbol Ci represents its type. Obviously, the range of values of vi is
equal to the potential of Ci, I(Ci). An implicitly typed variable vi is considered to be
either of the same type as the explicitly typed variable with the same symbol in the same
formula, if any, or of type 'object'. In the latter case it is called a universal variable.
Finally, there is the special variable '?self ' which has a special semantics, specified in
the subsequent sections.

A procedure term has the form

#(f n t1 ... tn)

where f n is a (user-defined or built-in) computable function symbol, and t1, ... , tn
its arguments that are terms (e.g. #(compute-weight !height), #(compute-
allowance ?x)).

Definition 2. (MPL term) An MPL term is either a constant or a variable
(implicitly or explicitly typed) or a procedure term or the special variable
'?self '.

Definition of an MPL non-atomic formula is identical to that of FOPC.
Cambridge Polish notation is used (see below) with as connectives {~ , & , V , =>}
for {negation, conjunction, disjunction, implication} and quantifiers {forall,
exists}. Full syntax of FOPC without function expressions is available (see [2
Ch.3, 6 Ch.2] for the basic FOPC terminology). The special variable ?self is
regarded as a universally quantified variable in the context of the class it is used,
and, unless otherwise specified, is assumed to have wide scope. We therefore, in
general, omit its quantifier.

Definition 3. (MPL formula) A well-formed MPL formula (wff) is defined as
follows:
 (i) an atom is a wff.
 (ii) if F is a wff, (~ F) is also a wff.
(iii) if F1 and F2 are wffs, (V F1 F2), (& F1 F2) and (=> F1 F2) are also wffs.
 (iv) if F is a wff and vi a free variable in F, ((forall vi) F) and ((exists vi) F)
 are also wffs.
 (v) nothing else is a wff.

A variable is free if it is not in the scope of any quantifier.
MPL does not directly support standard FOPC function expressions. However,

SILO can indirectly use arbitrary functions by declaring them as single-valued

b We use 'typed' as synonymous to 'sorted', used in many-sorted logics.

attributes and asserting their values via MPL formulas. For example, to express
(father-of john) = peter, given that john and peter are instances of man,
((father man) (1 1)) is declared in human and the formula (father peter
john) is introduced in john.

4.2.2. Procedural attachment

MPL supports a kind of procedural attachment. Procedural attachment is achieved
via procedure terms. Definitions of computable functions related to an object are
represented as procedure definitions in the object's definition and are stored in its
'procedures' component.

A procedure definition has the following structure, which is similar to a Lisp
function definition:

 <proc-def> ::= (<fun-name> (<args>) <body>)

 <fun-name> ::= computable function symbol

 <args> ::= (<arg>*)

 <arg> ::= MPL term

 <body> ::= (<p-expr>*)

 <p-expr> ::= Lisp expression

Apart from Lisp built-in primitive functions a SILO built-in function, namely
call-super, can be used in <body>. It takes as arguments a computable function
name with its corresponding arguments; it applies a procedure, from a superclass of
the object, with the name specified to the arguments specified. The superclass is the
first met in the class precedence list (see Section 5.3) after the object. This
corresponds to the 'super' facility of class-based systems [3, 5].

The way procedural attachment is implemented here is different from the
standard way (e.g. [16], Prolog), where evaluable/computable predicates are used
rather than computable terms. Our way of incorporating procedural attachment gives
a more natural representation, corresponding to the attribute-value model of object-
based systems. Myers' universal attachment mechanism [17] also allows for
procedural attachments to terms of a logical formula.

4.2.3. Formula expansion

MPL is an extension of FOPC as far as introduction of new types of terms is
concerned, such as normal and typed evaluable terms, typed variables and procedure
terms, which are called extensions. From them, evaluable terms are only used for
syntax conciseness purposes. Therefore, MPL formulas containing evaluable terms
are expanded to equivalent MSL-like formulas at creation time. To this end, each
evaluable term has a corresponding expansion, presented in Table 2, where vi is a
variable and to represents the object where the formula containing the term is stored
in. to is either the symbol of the object, if it is an instance, or the special variable
'?self ', otherwise.

An MPL formula is expanded according to the rules presented in Table 1. In that
table, QU and QE represent universal and existential quantification respectively and
F represents an MPL expression. FN is a conjunction with as conjuncts the
expansions of the evaluable terms occurring in F. FT is F with its extensions been
replaced by the (new) variables introduced. Finally, QUT is a universal
quantification binding the new variables.

Table 1. Expansion Rules

For example, ((forall ?x) (=> (son !son ?x:woman) (wife ?x

?self))) in man is expanded to

((forall ?x ?v)
(=> (son ?v ?self)

(=> (son ?v ?x:woman) (wife ?x ?self)))).

Table 2. Expansions and Translations

Also, ((exists ?x) (gives !son ?x:gift ?self)) in man is expanded to

((forall ?v)
(=> (son ?v ?self)

 ((exists ?x) (gives ?v ?x:gift ?self)))).
This expanded form of MPL formulas is used during a reasoning process.

4.2.4. Semantics

 Initial MPL formula Expanded MPL formula

 (QU F) ______________> (QUT (=> FN FT))

 (QE F) ______________> (QUT (=> FN (QE FT)))

 extension expansion translation
 !bi

1 ____> (pi
2 vi to) ____> (pi

2 vi to)

 !bi
1 :Ci

____> (pi
2 vi:Ci to) ____> (& (Ci vi)

 (pi
2 vi to))

 vi:Ci

_____> ----- ____> (Ci vi)

In this section, a declarative semantics for MPL is provided, by giving a translation
of MPL formulas into FOPC formulas. Because definition of a non-atomic formula
in MPL is identical to that of FOPC, translation only concerns the introduced
extensions, except procedure terms that cannot be given a declarative semantics. To
this end, each extension has a translation, presented in Table 2.

An MPL formula is translated into a FOPC formula according to the rules
presented in Table 3. The symbols QU, QE, QUT and FT have the same semantics as
in table 1. FN is a conjunction with as conjuncts the translations of the extensions
occurring in F. FN1 and FN2 are conjunctions with as conjuncts the translations of
the evaluable terms and the typed variables in F being under the scope of QE
respectively.

Table 3. Translation Rules

If the translated formula contains the special variable '?self ', then a further step

is required, based on the first of the above rules: '?self ' is treated as a typed
variable with as type the class the formula is stored in.

The example formulas used in the previous section are translated into

((forall ?v)
(=> (man ?v)

((forall ?v1 ?v2)
(=> (& (son ?v1 ?v) (woman ?v2))

(=> (son ?v1 ?v2) (wife ?v2 ?v))))))

and

((forall ?v)
(=> (man ?v)

((forall ?v1)
(=> (son ?v1 ?self)

((exists ?v2) (& (gift ?v2)
(gives ?v1 ?v2 ?self)))))))

respectively. From the examples, it is quite clear that an MPL expression is much
shorter than the corresponding FOPC one. This is basically due to the use of typed
and evaluable terms.

4.2.5. MPL Clausal form

MPL formula FOPC formula

 (QU F) ____________> (QUT (=> FN FT))

 (QE F) ____________> (QUT (=> FN1 (QE (& FN2 FT))))

The clausal form of an expanded MPL expression is produced using the same
standard procedure as in FOPC, except for some simple modifications. First, the
type of a variable is retained. Second, procedure terms are treated as constants.
Finally, two new terms are introduced, namely typed Skolem constants, and typed
Skolem functions. For example, the clausal form of the MPL expression

((exists ?x) (P ?x:C ?self))
is

((P (skf1 ?self):C ?self)),

whereas that of

((exists ?x) ((forall ?self) (P ?x:C ?self)))
is

((P skc1:C ?self)),

where skf1, skc1 are a skolem function and a skolem constant symbol respectively.

A literal is ground if its value arguments are ground terms. Ground terms are:
constants, Skolem constants, ground Skolem function expressions, the special
variable '?self '. A Skolem function expression is ground if its arguments are ground
terms.

Because of the attribute declarations, the notion of well-typedness is introduced,
as in MSLs. An MPL atom is well-typed if each of its value arguments is well-typed,
otherwise it is ill-typed. A value argument in an MPL atom is well-typed if it is
compatible with the corresponding type in the declaration of the homonymous
attribute of the atom's predicate. Well-typedness checking takes place at creation
time. Well-typedness plays a role in reasoning: ill-typed literals are not considered
for resolution.

Three types of literals are distinguished, namely ordinary literals, procedure
literals and message literals. A procedure literal is a literal that contains at least one
procedure term.

A message literal is a literal that contains no procedure terms and its object
argument is

 (i) a constant representing an object different from that the axiom of the literal is
stored in or

(ii) a typed variable,

that is it denotes an object different from the current object which is called the
receiver. A message literal is denoted by Li

Ri , where Ri represents the receiver. A

clause containing only message literals is called a message clause. Any other literal
is an ordinary literal. Ground literals are ordinary literals.

4.2.6. Message passing

The only way that objects can communicate between each other is by message
passing, which is a fundamental mechanism/operation in SILO. A simple message is
a message clause containing message literals of the same receiver:

Mi
Ri = (L1

Ri ... Ln
Ri).

The semantics of a simple message passing is to prove the body of the message, the
message clause, in the context of the receiver (see next section).

A compound message is a message clause consisting of message literals that
have not the same receiver. A compound message is organised as a sequence of
simple messages:

M = (M1
Ri ... Mn

Ri).

The semantics of a compound message is to conjunctively prove the bodies of its
simple messages in the contexts of the corresponding receivers: if any simple
message fails, the compound message also fails (see next section).

If the object argument in a message literal is a typed variable, it is a class
message, otherwise it is an instance message. The receiver of a class message is a
class-object, whereas of an instance message one or more specific instance-objects.
An instance message corresponds to the traditional 'extensional' message used in
class-based languages. A class message is a generalisation of the 'intentional' or
'anonymous' [18] or 'broadcast' [19] message. When the receiver is the object
object, then a class message is identical to an intentional message. For example,
(plays ?x george) in (=> (plays ?x george) (plays ?x john)) stored in
john is an instance message, whereas (son ?y ?x:woman) in (=> (& (son ?y
?self) (son ?y ?x:woman)) (wife ?x ?self)) stored in man is a class
message. (We use non-clausal form in the examples and omit quantifiers for
readability reasons).

4.3. Types of axioms

Because SILO uses a resolution-based inference mechanism, expanded MPL
formulas are converted into clausal form at creation time. Thus, the knowledge-part
of an object includes a number of (expanded) MPL clauses, called axioms, stored in
the 'axioms' component. There are two types of axioms (clauses), namely slot-
axioms and method-axioms. We say that an axiom belongs to an object if it is stored
in that object.

4.3.1. Slot-axioms

A slot-axiom is an MPL unit clause (axiom). Its object argument is either the
symbol of the instance-object it belongs to, e.g. (son mike john) and (~ (plays
?x:wind-instrument john)) in john, or the special variable '?self', if it
belongs to a class-object, e.g. (sex male ?self) in man and (eats ?x:meat
?self) in human. A slot-axiom represents a fact or a number of facts about an
attribute of an object and can be viewed as an attribute-value expression. A multi-
valued attribute gives rise to more than one slot-axiom with the same predicate.
SILO in general allows for n-ary predicates.

The restriction that the last argument in an MPL atom always denotes an object
gives a slightly different interpretation of it. Thus, the slot-axiom (likes mary
john) represents the fact "John likes Mary" and not the fact "Mary likes John" as
usual. Reversely, the fact "John eats beef" is represented as (eats beef john)
and not as usual (eats john beef), since this piece of knowledge refers to John,
that is 'eats' is an attribute of john and 'beef ' its value.

There are two non-overlapping groups of slot-axioms, namely class axioms and
instance axioms. The former include axioms whose predicate's homonymous
attribute is a class attribute, whereas the latter those corresponding to instance
attributes. Instance axioms are further divided in two other groups, namely essential
axioms and incidental axioms. The former are slot-axioms whose predicate's
homonymous attribute is an essential attribute, whereas the latter correspond to
incidental attributes. Use of class axioms is not discussed in this paper.

4.3.2. Method-axioms

Method-axioms are non-unit MPL clauses (axioms) and represent non-factual
knowledge relating to the attributes of an object. Method-axioms correspond to
methods in class-based languages or to if-needed procedures in frame-based
languages. Method-axioms may carry messages.

We distinguish three types of axioms: ordinary-axioms, message-axioms, and
procedure-axioms. An ordinary-axiom is an axiom containing only ordinary literals.
An ordinary-axiom only deals with local knowledge. For example, (=> (& (inp1
0 ?self) (inp2 0 ?self)) (out 0 ?self))) in or-gate is an ordinary-
axiom. A message-axiom is an axiom containing at least one message literal, but no
procedure literals. Message axioms carry messages. A message axiom deals with
knowledge related to other objects as well. For example, (=> (& (son ?y
?self) (son ?y ?x:woman)) (wife ?x ?self)) in man is a message-axiom.

A procedure-axiom is an axiom containing exactly one procedure literal, and any
number of message or ordinary literals. It is actually a Horn-type axiom whose head
is a procedure literal. A procedure-axiom may involve knowledge related to other
objects, since it may include message literals. For example, (=> (height ?y
?self) (weight #(compute-weight ?y) ?self)) and (=> (& (father ?x
?self) (income ?y ?x)) (allowance #(compute-allowance ?y)
?self)) are procedure-axioms. Each procedure-axiom is relating to a single-valued
attribute. Thus, a procedure-axiom represents one procedure (in case of a simple
attribute) or a set of procedures (in case of a composite attribute) that computes the
value of a single-valued attribute. The variables in a procedure term of the
procedure literal of a procedure-axiom are assumed to be instantiated via the body
of the procedure-axiom. A similar idea is used in RHET [20], in that variable
arguments in a function call may have been instantiated via a previously performed
unification, but not during the current unification, as in SILO.

5. Inheritance in SILO

Inheritance is a fundamental mechanism in SILO as in most object-based systems.
Typically, in a multiple inheritance system, an instance/class inherits knowledge
from all of its classes/superclasses. Multiple inheritance causes no problems at all as
long as there is no conflicting knowledge, either within an instance/class and a
class/superclass of it or within different classes/superclasses of it. In such cases, an
instance/class inherits all the knowledge from within its classes/superclasses In
cases where conflicting knowledge exists problems arise [21]. In such cases, in
order to resolve conflicts, the more specific information about an attribute
invalidates the less specific one. The problem is then two-fold, how to detect
conflicting knowledge and how to determine its most specific occurrence.

We distinguish two aspects of inheritance. The first, called content inheritance,
concerns which part of the domain knowledge of an object is inherited. The second,
called inheritance order, concerns the order in which the classes/superclasses of an
instance or a class with multiple parents are visited for inheritance. We further
distinguish two aspects of content inheritance. The first is called complete
inheritance and concerns inheritance of the attribute declarations and the axioms
themselves. The second is called atomic inheritance and concerns inheritance of the
atomic consequences of the axioms. Thus, while complete inheritance refers to all
the consequences of axioms, atomic inheritance refers to their atomic consequences.

Apart from various inheritance aspects, SILO supports a variety of specialisation
types between axioms, such as addition, various types of extension, substitution,
refinement and exception of knowledge. In the following subsections we present
basic issues of the inheritance mechanism of SILO in a simplified way. For a
detailed and formal treatment refer to [22].

5.1. Complete inheritance

A conflict, from the point of view of complete inheritance, is defined as follows,
where ah represents an axiom stored higher up and al an axiom stored lower down
in the context of an object.

Definition 4. (Conflict) An axiom ah is conflicting with an axiom al if al is
either a substitution for or a refinement of or an exception to ah.

Detection of conflicts then relies on the following definitions concerning the
specialisation types involved in Def. 4. In the following, G(ai) represents the ground
instantiations of the axiom ai.

Definition 5. (Substitution) An axiom al is a substitution for an axiom ah if
they are definitions for the same single-valued attribute.

Definition 6. (Refinement) An axiom al is a refinement of an axiom ah if
G(ah) ⊃ G(al).

Definition 7. (Exception) An axiom al is an exception to (or inconsistent
with) an axiom ah if G(al) ⊇ G(~ah).

Based on the above definitions, a few detection theorems for detecting conflicts
have been introduced [22]. The examples below, that refer to the knowledge base of

Fig. 3, give a flavour of the specialisations as well as the detection rules employed
in SILO. In Fig. 3, human is a subclass of mammal and john, peter are
instances of human, and for the sake of conciseness formulas are in non-clausal
form and unexpanded.

 mammal
 (num-of-legs 4 ?self)
 (likes swimming ?self)
 (eats ?x:vegetable ?self)

 human
 (num-of-legs 2 ?self)
 (eats ?x:meat ?self)
 (lives-in !works-in ?self)

 john peter
 (father peter john) (eats pork peter)
 (~ (likes swimming john)) (likes chess peter)
 (~ (eats ?x:anim-prod john)) (=> (lives-in ?x john) (lives-in ?x peter))
 (=> (likes ?x !father) (likes ?x john))

Fig. 3. An Example Knowledge Base in SILO.

So, (~ (likes swimming john)) in john is an exception to (or inconsistent with)
(likes swimming ?self) in mammal. Also, (~ (eats ?x:animal-product john)) in john
is an exception to (eats ?x:meat ?self) in human, since meat is a subclass of
animal-product (Def. 7). As it is clear, negation is used to express exceptions.
This representation scheme, called exception by negation, is very powerful in
representing knowledge, like e.g. representing state changes in planning problems in
the blocks world [22].

On the other hand, (num-of-legs 2 ?self) in human is a substitution for (num-of-
legs 4 ?self) in mammal, since they are definitions for the same attribute 'num-of-
legs'. Similarly, (=> (lives-in ?x john) (lives-in ?x peter)) in peter is a substitution
for (lives-in !works-in ?self) in human (Def. 5). Finally, (eats pork peter) in peter
is a refinement of (eats ?x:meat ?self) in human, since pork is an instance of
meat (Def. 6).

Apart from the above types, SILO also supports other types of specialisation that
do not create conflicts. For example, (eats ?x:meat ?self) in human is an extension
of (eats ?x:vegetable ?self) in mammal, since it introduces new values for a multi-
valued attribute. Also, (lives-in !works-in ?self) is an addition to knowledge in
mammal, since it introduces knowledge about a new attribute.

As far as inheritance of attribute declarations is concerned, any attribute
declaration lower down is conflicting with any attribute declaration higher up that
refers to the same attribute.

After detection of conflicts, overriding (or masking) is employed in SILO, as in
object-based systems [3, 5]. This means that an axiom al lower down overrides any

conflicting axiom ah stored higher up in the hierarchy. The same holds for attribute
declarations.

Apart from the built-in specialisations and detection rules, the user can define its
own by (re)defining the inheritance meta-functions (see Section 7.1 and the
Appendix), stored in the corresponding objects.

5.2. Atomic inheritance

The above principles and techniques concern complete inheritance. However, they
are not appropriate to deal with cases where not all of the atomic consequences of
axioms are inherited. Therefore, another technique, called consequence retraction,
is employed in SILO. Consequence retraction is similar to 'solution invalidation'
(notion introduced in [23]). We use a more general view of this technique:

Definition 8. (Consequence Retraction) An atomic consequence found
during a reasoning process in the context of an object is retracted if it is
inconsistent with any of the axioms in the object's current theory.

For example, the answer to query ((exists ?x) (likes ?x john)) would
be (likes swimming john) and (likes chess john), since John likes
whatever his father likes (see Fig. 3). However, the answer is only (likes chess
john), because the other candidate answer is invalidated, as being inconsistent with
(~ (like swimming john)). Again here negation is used to represent exceptions
to defaults.

5.3. Inheritance order

If the conflicting axioms are not within classes that belong to the same path/branch
in a hierarchy, but within classes/superclasses of an instance/class that belong to
different paths, the situation is more complicated. In these cases inheritance order
should be also considered. The order in which an instance/subclass inherits from its
classes/superclasses is very important, as the first occurrence of an axiom overrides
all subsequent (conflicting) occurrences higher up. In this case, an ordering strategy
is required to define a precedence list of the (super)classes of any object. The class
precedence list lOi

 of an object Oi is an ordered set of the (symbols of the)
superobjects of the object that determines the inheritance path to be followed. A
superobject of an object Oi is any object higher up in the hierarchy that belongs to a
path from the root to Oi. A breadth-first left-to-right strategy is used as the default
strategy, to determine the inheritance path. The user, however, can define its own
strategy for determining the inheritance path either globally or locally via the
inheritance meta-functions. The precedence list lOi

 of each instance-object is
computed at creation time. For example, the precedence list of m2 in the hierarchy
of Fig. 2, based on the default strategy, is lm2={man, writer, human,
mammal, animal, object}.

6. Reasoning in SILO

In this section, we discuss SILO's operational semantics, that is how reasoning is
performed in SILO. The inference mechanism of SILO is a tight integration of
inheritance, resolution refutation and message passing. A proof process starts off as
soon as a message is sent to an object. Message passing to an object in SILO means
sending an MPL clause, called a theorem, to be proved from the theory available in
the context of the object. The context of an object is defined differently for an
instance and a class. The context of an instance Oi , is defined as the union of its
local theory and the theories it can inherit from objects higher up. The local theory
LOi

 of an object Oi includes the axioms locally stored in Oi . The context of a class
is defined as the union of the contexts of its instances and subclasses.

6.1. Proof process

Each query, that is an MPL formula F set by the user, is negated and converted into
its clausal form T, which is considered as a message. If it is a simple message, it is
sent to the corresponding receiver (object) to be proved. If it is a compound
message, its constituent simple messages are successively sent to the corresponding
receivers (objects) to be proved. If any partial proof fail, the whole proof (query)
fails. This is called the query-based proof process, which is the top-level process,
and is more formally described below. Each partial proof process is an object-based
proof process. In the following, Mc and Rc represent the current simple message to
be processed and the corresponding receiver respectively, whereas PRc

(Mc) denotes
an object-based process. Also, first and rest are two functions acting in the same
way as the corresponding Lisp functions, whereas receiver is a function that
specifies the receiver of a simple message clause.

(1) Negate F and convert it to its clausal form T; set Tc = T.
(2) If Tc is a simple message, set Mc = Tc and Rc = receiver(Tc); goto step 5.
(3) Organise Tc as a sequence of simple messages.
(4) Set Mc = first(Tc), Rc = receiver(Mc) and Tc = rest(Tc).
(5) If Mc is a ground message, check consequence retraction in LRc

.
(6) If Mc is retracted, stop (failure).
(7) Perform PRc

(Mc).
(8) If PRc

(Mc) is not successful, stop (failure).
(9) If Tc is the empty clause, stop (success).

(10) Goto step 4.

There are different object-based proof processes followed in the case of an
instance and a class message, called instance-based proof process and class-based
proof process respectively. An instance-based proof process takes place in the
context of an instance, whereas a class-based one in the context of a class.

6.1.1. Instance-based proof process

When a message clause Mi, called a theorem, is sent to an instance Oi , the system
will first try to prove it using LOi

. If this fails, axioms from its class(es) are

inherited, according to their precedence and the inheritance rules, joined to those
already available, and another resolution attempt is made. If this also fails, then
axioms from the immediate superclass(es) of its class(es) are inherited, joined and
tried for resolution, and so on. This process continues until either the query
(theorem) is successfully answered (resolved), or there are no more axioms to be
inherited, in which case it fails.

The above instance-based procedure is more formally described below, where by
Oc and Cn the current (instance) object and the next (class) object in the hierarchy
to be considered for inheritance are respectively denoted. The available axioms at
any time for proving the current theorem Tc constitute the current theory, denoted
by Sc. The object in whose context reasoning is currently taking place is called the
current object. The special variable '?self ' is always bound to the symbol of the
current object. Finally, by P(S) an MB-Resolution process in S (see Section 6.3) is
denoted. P(S) is successful, if the empty clause is produced.

(1) Set Oc = Oi , Tc = Mi and Sc = LOi
 ∪ {Tc}; start P(Sc).

(2) If P(Sc) is successful, check consequence retraction in Sc and stop
 (success).

(3) Set Cn = first(lOc
) and lOc

 = rest(lOc) .
(4) Make Sc = Sc ∪ F(LCn

) ; start P(Sc).
(5) If P(Sc) is successful, check consequence retraction in Sc and stop

 (success).
(6) If lOc

 is empty, stop (failure).
(7) Go to step 3.

F(S) represents the action of the inheritance rules, both built-in and user-defined.
It takes as input the local theory of an object and gives as output the axioms that
will be inherited, that is added to the current theory. In cases where there are no
conflicting axioms, hence the whole local theory is inherited, a monotonic extension
of the current theory takes place, otherwise a nonmonotonic extension is performed,
which facilitates default reasoning.

6.1.2. Class-based proof process

When a theorem Mi is sent to a class Ci , the system first considers the union of its
own essential and the essential slot-axioms of all of its superclasses. If the theorem
resolves with any of them and the empty clause is produced, a solution has been
found. Otherwise, the theorem is sent to the instances of the class successively. If
the empty clause is produced in the context of any instance, then a solution has been
found. If not and the class is a terminal class, it fails. Otherwise, the theorem is sent
to each of the immediate subclasses of the class successively. In each subclass only
its essential slot-axioms are considered, and so on. During this process, if the
theorem resolves with an essential axiom in a class, only instances and subclasses of
that class are considered afterwards.

The above class-based proof procedure is more formally described below, where
the following notation is used. Cc is the current (class) object, in the context of

whose reasoning is taking place. ACi
 is a set including the essential axioms of Ci and

the essential axioms inherited from all the superclasses of Ci. Ac is the current set of
essential slot-axioms. P(Ai , Ti) denotes a linear resolution process in (Ai ∪ Ti), with
Ti as the top sentence. A resolution process is successful if the empty clause is
produced. It is partially successful if the empty clause cannot be produced, but there
is at least one resolution step performed. A resolution process fails, if there is no
resolution step performed. Qf is a flag that can take on one of four values: NIL,
SUC, RES and FAIL, representing its initial value, a resolution process success, a
resolution partial success and a resolution failure respectively. Also, rc is the most
recently produced resolvent. Finally, Gc is an auxiliary set used for reset purposes.
Also, recall that by ICi

 and DCi
 the instances and the subclasses respectively of Ci

are represented.

(1) Set Cc = Ci , Tc = Mi , Qf = NIL and Gc to be empty.
(2) Make Ac = ACi

 ; start P(Ac , Tc).
(3) If P(Ac , Tc) is successful, stop (success).
(4) Set Ic = ICc

 and Dc = DCc
.

(5) If Ic is empty, goto step 9.
(6) Set Oc = first(Ic) and Ic = rest(Ic) ; start POc

(Tc).
(7) If POc

(Tc) is successful, set Qf = SUC.
(8) Goto step 5.
(9) If Qf = SUC, stop (success).

(10) If Cc is a terminal class and Gc is empty, stop (failure).
(11) If Qf = RES, set Dc = DCc

 and Qf = NIL.
(12) If Qf = FAIL, set Dc = DCc

 ; if Dc is empty, goto step 19.
(13) Set Cc = first(Dc) and Dc = rest(Dc) .
(14) Make Ac = ACc

 ; start P(Ac , Tc).
(15) If P(Ac , Tc) is successful, stop (success).
(16) If P(Ac , Tc) is partially successful, set Tc = rc , Ic = ICc

 , Qf = RES
 and Gc to be empty; goto step 5.
(17) If Dc is not empty, make Gc = Gc ∪ {Cc}; goto step 13.
(18) Set Qf = FAIL and make Gc = Gc ∪ {Cc} .
(19) If Gc is not empty, set Cc = first(Gc), Gc = rest(Gc) and Ic = ICc

.
(20) Goto step 5.

The class-based proof process is a generalisation of what is called 'object search'

(e.g. in [19]). A class-based proof process eventually ends up to one or more
instance-based processes. While an instance-based process goes bottom-up via
inheritance links/relations, a class-based process goes top-down via specialisation
links/relations, before it results in a number of instance-based processes. Also,
while during an instance-based process there are successive extensions of the initial
object's theory, during a class-based process there are successive restrictions of the
initial context theory. This is illustrated in Fig. 4, where the route of a class-based
proof process is indicated via the bold directed line. For the sake of simplicity, we

assume that non-terminal classes have only subclasses and no instances. It is
obvious that this theory restriction results in increasing efficiency.

FAIL RES

RESFAIL

FAIL

SUC

RES

C 4

C 1

C 2
C 3

C 5
C 6 C 7

C 8 C 9

O 8-1 O 8-n O 9-1 O 9-m

Class Message

Fig. 4. Theory restriction in a class-based proof process.

6.2. Unification

The standard unification algorithm has been extended to be able to handle
unifications related to typed terms as well as to procedure terms. The following
rules, similar to those in a standard many-sorted unification algorithm, are used to
deal with typed terms:

•a typed variable vi:C1 unifies with a constant Oi, if ∃ C2, Oi < C2 and C2 <<
C1.

•a typed variable vi:C1 unifies with a typed (skolem) constant/function

skci:C2/(skfi ti1 ... tin):C2, if C2 << C1 .

•a typed variable vi:C1 unifies with another typed variable vk:C2, if ∃ D12, D12
= C1 ∩ C2, where '∩' means "intersection", that is D12 << C1 and D12 << C2,
or D12 < Ck and D12 < Cm with Ck << C1 and Cm << C2. D12 is the greatest
common descendant of C1 and C2 in the hierarchy. D12 is called then the
greatest lower intersection (gli) of C1 and C2. (It corresponds to the greatest

lower bound, glb, in MSL [7]). D12 becomes the type of the unified variable,
say vm, that substitutes for the two variables, i.e. vm:D12. In case that gli is not
unique, due to multiple inheritance, the most general (least specific) is chosen.
This is determined by the rules established in Section 6.3.2.

To ensure soundness of derivations related to types (sorts) (see [24]), SILO does
not allow for empty classes, that is classes having no instances.

For efficiency reasons, after unification of the predicates of two literals,
unification of their object arguments is tried and then unification of their value
arguments. A procedure term eventually becomes a constant. For efficiency and
completeness reasons, its value is determined during unification of the associated
literal. However, determination of its value may result in activation of a chain of
resolution processes. This leads to a stronger interaction between unification and
resolution than traditional.

When unification comes across a procedure term unification is suspended and it
will wait until all of its arguments are instantiated to ground terms. This means that
a series of resolution processes start off to infer values for the uninstantiated
arguments of the procedure term. If instantiation of any argument fails, unification
fails. Consequently, the corresponding function is executed. If execution fails,
unification fails. Otherwise, its result substitutes for the procedure term and well-
typedness of the atom is checked. If well-typedness fails, unification also fails.

The part of the unification algorithm for the evaluation of a procedure term is
given below.

(1) If tc2 = tp , make Tc = BP and Sc = Sc ∪ Tc ; start P(Sc).
(2) If P(Sc) is successful, substitute variable bindings for tp1 , ..., tpm ;
 execute f m.
 (2.1) If f m execution is successful, substitute its result, f(tp), for tp and
 check well-typedness of Lp .
 (2.1.1) If well-typedness checking fails, stop (failure).
 (2.1.2) If tc1 unifies with f(tp), stop (success).
 (2.1.3) Stop (failure).
 (2.2) Stop (failure)
(3) Stop (failure).

The following terminology is used in the above algorithm. ap is a procedure-axiom,
Lp = first(ap) is its procedure literal, since it is always is first in the axiom clause,
and Bp = rest(ap) is its body. Lp has the form Lp ≡ (pn+1 t1 ... tp ... tn to), where tp
is a procedure term of the form tp ≡ (f m tp1 ... tpm). (For the sake of simplicity we
assume only one procedure term in LP). In a term pair from the two literals under
consideration for unification, tc1 represents the term from the first literal and tc2 the
term from the second literal.

6.3. Message based resolution

SILO uses as its basic resolution control strategy linear resolution (see e.g. [6]).
However, the standard resolution process has been extended to mainly

accommodate message passing. Because message passing is incorporated within the
logical expressions, when a message expression is met during a resolution process,
the process is suspended and another (sub)process starts off within another object
according to the message instructions. Therefore, SILO's resolution process is called
message based resolution (MB-Resolution). As usual, it aims at the production of
the empty clause from a set of MPL clauses (axioms).

6.3.1. MB-Resolution process

In this section the MB-Resolution process is described. When two axioms are
resolved and the resulting clause (resolvent) is not a message clause, then the
resolvent is produced as usual. If not, an attempt is made to resolve the remaining
literals in the contexts of their corresponding receivers, after substitution of the
variable bindings produced by last resolution. This means that the current resolution
attempt is suspended and a chain of new resolution attempts, one for each simple
message starts. Bindings of a succeeded resolution attempt substitute for the
corresponding variables, if any, in the remaining message clause before the next
resolution attempt. Failure of a message literal to be resolved results in failure of
the initial resolution and no resolvent is produced. If all message literals are
resolved, then the empty clause is produced and a solution is found. Thus, one step
of message-based resolution consists of a number of steps of ordinary resolution.

MB-Resolution process in a set of axioms Sc is more formally described by the
following algorithm, where σc represents the current substitution (i.e. variable
bindings), produced by the most recent successful resolution process, and solution
stack is a set containing the solution already found.

(1) If there are no resolvable axioms in Sc
 (1.1) If solution stack is empty, stop (failure).
 (1.2) Stop (success).
(2) Select two resolvable axioms and compute their resolvent r12 as usual.
(3) If r12 is the empty clause, update solution stack; goto step 1.
(4) If r12 is not a message clause, make Sc = Sc ∪ {r12} ; goto step 1.
(5) Suspend current resolution process and organise r12 as a sequence of
 simple messages: r12 = (M1 M2 ... Mn).
 (5.1) If r12 is the empty clause, stop (success).
 (5.2) Set Mc = first(r12), Rc = receiver(Mc) and r12 = rest(r12);
 start PRc

(Mc).
 (5.3) If PRc

(Mc) is successful, check consequence retraction in Sc; then
 update the solution stack; make r12 = r12 ° σc; goto step 5.1.

 (5.4) Goto step 1.

message-1

success success

initial message

final success

resolution
 process

initial
 resolution

 subprocess-1 subprocess-n

initial context context-1 context-n
(object-1) (object-n)(initial object)

 resolution

success

message-nmessage-2

Fig. 5. Resolution with message passing.

An MB-Resolution in a set of axioms S is represented by P(S). The strong
interaction between resolution and message passing is illustrated in Fig. 5.

6.3.2. Control heuristics

There are a few built-in resolution control heuristics that aim at increasing inference
efficiency. The literals in any procedure-axiom are ordered in such a way that the
procedure literal is always first, that is the head of the axiom, and is the only one to
be tried for resolution. The rest literals constitute the body of the procedure literal
and are used for instantiation of the variables in the head. The rest literals and the
literals in any other axiom are ordered in such a way that message literals always
follow all ordinary literals; positive ordinary literals precede negative ordinary
literals.

The message literals in a compound message clause are ordered in such a way
that a literal with a more specific receiver (object) is always before a literal with a
less specific receiver. The rules for determining the specificity order of the
receivers are the following:

 (i) An instance is more specific than a class.
(ii) A class C1 is more specific than a class C2 if the distance of C1 is greater

than the distance of C2.

The distance of a class is determined as the shortest path from the class to the object
object. If C1 and C2 have the same distance, one is arbitrarily chosen.

7. Control Knowledge Representation

7.1. Meta-functions

SILO is a meta-level system, where object-level process control is achieved via
(re)definition of certain functions, called meta-functions (see Section 2.4). SILO
meta-functions are distinguished in deduction meta-functions and inheritance meta-
functions. Deduction meta-functions concern deduction control. The deductive
component of SILO's reasoner is a very restricted, in terms of control capabilities,
and modified, as far as the reasoning process is concerned, version of ACT-P [12].
ACT-P is a resolution-based theorem prover, where resolution control can be
specified by the user via a number of meta-functions. While ACT-P allows for
changing the main resolution strategy, called the parent selection strategy, SILO has
a fixed one, namely linear resolution. Thus, while ACT-P can be configured to
incorporate strategies other than linear resolution, such as input resolution and P1-
resolution, SILO's reasoner can be only configured to implement variations of linear
resolution, such as SLD-resolution. This choice has been made for efficiency and
pragmatic (deductions in SILO are less complicated than those in plain logic)
reasons. So, deduction meta-functions of SILO are a small subset of ACT-P's meta-
functions. Deduction meta-functions are stored in the 'deduction-control'
component.

Inheritance meta-functions concern inheritance control; they are more fully
described and justified in [22]. They control both complete inheritance and
inheritance order. One can specify its own inheritance rules as far as complete
inheritance is concerned; the arguments of the corresponding meta-functions are
such that decisions based on the hardwired rules can be retracted. Also, because the
query/theorem to be answered/proved is provided as an argument, problem specific
rules can be also specified. The meta-functions concerning inheritance order specify
the strategy to be followed for the inheritance path determination in cases of
multiple paths. Inheritance meta-functions can have local or global effect, that is to
specify local arrangements or general rules to be followed by all objects.
Inheritance meta-functions are stored in the 'inheritance-control' component of an
object. In the Appendix, the names of deduction and inheritance meta-functions are
presented with a brief description of their effects.

7.2. Control defining language (CDL)

The integrated language composed of SDL and MPL is the object-level language of
SILO; it concerns representation of domain knowledge in an object. The meta-level
language of SILO is called control defining language (CDL) and concerns
representation of control knowledge in an object. CDL expressions are actually the
meta-function definitions. The control knowledge template in an object definition
(see Section 4) consists of a number of CDL expressions:

 <control-defs> ::= <ded-control-defs>
 <inh-control-defs>

 <ded-control-defs> ::= (<ded-function-def>*)

 <inh-control-defs> ::= (<inh-function-def>*)

 <ded-function-def> ::= (<ded-function-name> (<args>) <body>

 <inh-function-def> ::= (<inh-function-name> (<args>) <body>

 <ded-function-name> ::= deduction meta-function symbol

 <inh-function-name> ::= inheritance meta-function symbol,

where <args> and <body> are defined as in a Lisp function definition.
To facilitate definition of the meta-functions, special built-in primitives, called

meta-primitives, are provided that can access object internal information and
perform a number of important actions. For a description of a number of them see
[25].

8. Examples

In this section, some examples are presented that aim to illustrate some basic
aspects of SILO. Specifically, in the first subsection a few SILO object definitions
are presented; in the rest subsections examples that concern aspects of reasoning in
SILO are presented.

Querying in SILO is enabled via the (built-in) primitive 'prove':

(prove <form>)

where <form> is an MPL formula. It returns either a set of variable bindings (a list
of dotted pairs), if it is successful, or an indication for no solution, otherwise.

8.1. Object definitions

The following are object definitions in SILO. For the sake of simplicity, they are
not complete in all of their parts.

(defclass human
;links
((mammal))
;attributes
(((lives-in city) (1 1))
((sex (male female)) (1 1))
((income integerp) (1 1))
((son man)))

;definitional specs
nil

;axioms
((num-of-legs 2 ?self)
(eats ?x:meat ?self)
(lives-in !works-in ?self)
(allowance #(compute-allowance !income) ?self))

;procedures
((compute-allowance (income)

(if (< income 1500)
(- 1500 income) 0)))

;deduction control

((select-l-literals (l-parent)
(list (car l-parent)))

(select-r-parent (r-parent)
(remove-if-not #'positive-literal r-parent)))

;inheritance control
nil)

(defclass man
;links
((human)(woman))
;attributes
(((wife woman) (1 1)))
;definitional specs
((vess sex))
;axioms
((sex male ?self)
(weight #(compute-weight !height) ?self)
((forall ?x)(=> (son !son ?x:woman)

(wife ?x ?self))))
;procedures
((compute-weight (height)

(* 0.9 (- height 1))))
;deduction control
nil

;inheritance control
nil)

(definst john
;links
(man student)
;attributes
nil

;definitional specs
nil

;axioms
((lives-in paris john)
(~ (likes swimming john))
((forall ?x)(=> (likes ?x !father)

(likes ?x john))))
;procedures
nil

;deduction control
nil

;inheritance control
((l-order-classes (sups theorem)

(let ((preds (get-preds theorem)))

(if (member 'allowance preds)
(reverse sups)
sups)))))

8.2. Human relations

The object hierarchy used in this example is the following (where bold terms denote
classes).

object
 human
 man woman
 john carol
 mike mary

Also, the part of the knowledge base which is of interest for the example (only
related axioms are presented in clausal form) is as follows:

human
 ((num-of-legs 2 ?self))

man woman
 ((sex male ?self)) ((sex female ?self))
 ((wife ?z:woman ?self)
 (~ (son ?v ?self)))
 (~ (son ?v ?x:woman))

john mary
 ((son mike john)) ((son mike mary))
 ((num-of-legs 1 john))

The attribute 'sex' has been declared as value essential.
Suppose that the following simple query is posed,

(prove '((exists ?x) (wife ?x john)))
that is F ≡ ((exists ?x) (wife ?x john)). Then T ≡ ((~ (wife ?x john))) is a simple
message sent to john, as indicated by the fact that "john" is the object argument. It
does not resolve with any axiom within john. Therefore, the axioms from man are
directly inherited and the following set of clauses is set up:

(1) ((son mike john))
(2) ((sex male ?self)) ,
(3) ((wife ?z:woman ?self) (~ (son ?v ?self)) (~ (son ?v ?x:woman)))

with '?self ' bound to "john". The query clause ((~ (wife ?x john))) initially resolves
with (3) and the following clause (resolvent) is produced:

((~ (son ?v john)) (~ (son ?v ?x:woman))).

This then resolves with (1), with ?v bound to "mike", and the following resolvent is
to be produced,

((~ (son mike ?x:woman)).

However, because it is a message clause, the actual resolvent is not produced until
the message literal resolves. The message literal (~ (son mike ?x:woman)) results in
a series of messages being sent successively to each instance of the class woman,
until a successful binding is found for ?x. So, (~ (son mike carol)) is sent to carol.
However, since this query fails, the system then sends (~ (son mike mary)) to mary.
Because this resolves within mary, success is returned to john and the suspended
resolution process continues, producing the empty clause and returning
((?x.mary)).

Suppose now the following query,

(prove '((exists ?x) (& (sex female ?x:human) (son mike ?x)))).

The clausal form of its negation gives, ((~ (sex female ?x:human)) (~ (son mike
?x:human))), which is sent to human. Because there is no resolvable essential
axiom within human, it is sequentially sent to the subclasses of human, man and
woman. There is no resolvable essential axiom in man, but there is in woman, from
which ((~ (son mike ?x:woman))) is produced. Since woman is a terminal class, the
produced message clause is sent to its instances one by one. It finally resolves with
((son mike mary)) in mary, the empty clause is produced and ((?x.mary)) is
returned. Notice here, how top-down reasoning within classes reduces the number of
instances to be searched, i.e. by excluding instances of man.

Finally, suppose the query,
(prove '((exists ?x) (num-of-legs ?x mary))).

Then, ((~ (num-of-legs ?x mary))) is sent to mary, which eventually inherits ((num-
of-legs 2 ?self)) from human with '?self ' bound to "mary", and the empty clause is
produced with ?x bound to "2", that is ((?x.2)) is returned. However, for the
query

(prove '((exists ?x) (num-of-legs ?x john)))
((~ (num-of-legs ?x john))) is sent to john, where it resolves with ((num-of-legs 1
john)), and the empty clause is produced with ?x bound to "1". That is, the more
specific ((num-of-legs 1 john)) masks the more general ((num-of-legs 2 ?self)). This
is a simple example of how default reasoning is performed in SILO.

8.3. Birds and snails

The domain knowledge used here is: "Birds and snails are animals and there are
some of each of them. Also, there are some plants. Every animal likes to eat all
plants or all animals much smaller than itself that like to eat some plants. Birds do
not like to eat snails. Snails are much smaller than birds and like to eat some
plants". (This is part of the well-known, in theorem proving, Schubert's steamroller
problem [26]).

The object hierarchy of the domain is the following.

object
 animal plant
 bird snail
 b1 c1 p1

where b1, c1 , and p1 represent arbitrary instances of bird, snail, and plant
respectively. The object internal knowledge is as follows (presented in non-clausal
form, for the sake of readability).

animal
(V ((forall ?x) (eats ?x:plant ?self))
 ((forall ?y) (=> (& (sm-th ?self ?y:animal)
 ((exists ?z) (eats ?z:plant ?y)))
 (eats ?y ?self))))

bird
((forall ?x) (~ (eats ?x:snail ?self)))

snail
((forall ?x) (sm-th ?x:bird ?self))
((exists ?x) (eats ?x:plant ?self))

There are no value essential attributes declared.
The query posed is,

(prove '((exists ?y) ((exists ?x) (eats ?x ?y:bird)))).

Thus, ((~ (eats ?x ?y:bird))) is sent to the class bird. Because there are no
essential axioms in bird upwards, it is sent to its instance b1. Because there is no
resolvable axiom, axioms from bird and animal are successively inherited so
that the following set of clauses is created:

(1) ((~ (eats ?x ?y)))
(2) ((~ (eats ?s:snail ?self)))
(3) ((eats ?p1:plant ?self)
 (eats ?a:animal ?self)
 (~ (sm-th ?self ?a:animal))
 (~ (eats ?p2:plant ?a:animal)))

where ?y and ?self are bound to "b1". Now, (1) and (2) successively resolve with
(3) with ?x restricted to "plant", and the following resolvent is produced ((~ (sm-th
b1 ?u:snail)) (~ (eats ?p2:plant ?u:snail))), where ?u:snail is the unified variable
produced from the unification of ?s:snail and ?a:animal, since snail is the gli of
snail and animal. The resolvent is a simple message, thus it is sent to snail
and the current resolution is suspended. Since there are no essential axioms in
snail upwards, it is sent to s1, which inherits axioms from snail and a new
resolution attempt starts from the following set of clauses

(4) ((~ (sm-th b1 ?u))
 (~ (eats ?p2:plant ?u)))
(5) ((sm-th ?b:bird ?self))

(6) ((eats (skf1 ?self):plant ?self))

where ?u and ?self are restricted to "snail". Now, (5) and (6) successively resolve
with (4) and produce the empty clause. Thus, the initial resolution succeeds and the
empty clause is produced, with ?x bound to "plant" and ?y bound to "b1", that is
((?x.plant) (?y.b1)) is returned. Notice that ?x is bound to a class name.
This is an intentional way of expressing that a set of objects have a certain property.
Taxlog [27] offers a similar capability.

8.4. Student affairs

In this last example, we demonstrate how procedural attachment is performed and
the 'super' facility is used in SILO. We use the following hierarchy,

 object
 human
 man student
 john john
 peter

where john is an instance of both man and student. We also use the following
(partial) knowledge base.

human
; procedures

 ((compute-allowance (income)
 (if (< income 1500) (- 1500 income) 0)))

student
; axioms

 (((allowance #(compute-allowance ?inc) ?self)
 (~ (father ?x ?self)) (~ (income ?inc ?x))))
; procedures

 ((compute-allowance (income)
 (let ((v-income (* 0.75 income)))
 (* 0.5 (call-super 'compute-allowance v-income)))))

john
; axioms

 ((father peter john))

peter
; axioms

 ((income 1200 peter))

The query is "what allowance will John get?", expressed as

(prove `((exists ?x) (allowance ?x john))).

Thus, (~ (allowance ?x john)) is sent to john and, after the inheritance of the
axiom from student, the following set of clauses is set up,

(1) ((~ (allowance ?x john))
(2) ((allowance #(compute-allowance ?inc) ?self)
 (~ (father ?v ?self)) (~ (income ?inc ?v)))
(3) ((father peter john))

with ?self bound to "john".
First, an attempt is made to examine if clauses (1) and (2) are resolvable. Clause

(2) is a procedure-axiom, which means that only the procedure literal participates in
the process. Unification of the predicates of the literals of (1) and (2) succeeds.
When unification comes across the computable term #(compute-allowance ?inc), it
is suspended and the system tries to evaluate the argument of the term. To this end,
the body of the procedure-axiom is joined to the above set of axioms as

(4) ((~ (father ?v ?self)) (~ (income ?inc ?v)))

and a resolution process starts. Clause (4) successively resolves with (3) and the
clause (resolvent) ((~ (income ?inc peter)) is to be produced, with ?v bound to
"peter". Because it is a simple message, it is sent to peter, where a resolution
subprocess starts. ((~ (income ?inc peter)) resolves with ((income 1200 peter)) and
the empty clause is produced with ?inc bound to "1200". The initial resolution then
also succeeds. Thus, ?inc is instantiated and (compute-allowance 1200) is executed.
During this execution, the homonymous procedure from human is called via the
primitive 'call-super' in the body of 'compute-allowance' definition in student.
Execution of the procedure finally returns '300', which substitutes for the procedure
term. Now, ?x unifies with '300', hence (1) resolves with (2) and the empty clause is
produced. Obviously, ((?x . 300)) is returned.

9. Related Work

Systems that in some way combine logic and objects can be distinguished in two
broad categories. The first category includes hybrid knowledge representation
systems that integrate notions from objects into logic. E.g. systems like KRYPTON
[28] and KL-TWO [29], use the notion of the hierarchy of concepts in their
terminological component, and a FOPC-based language in their assertional one. The
unification algorithm is extended to take the information in the terminological
component into account. Also, systems like [24], LOGIN [30] and Taxlog [27]
employ a lattice/hierarchy of sorts alongside a FOPC-based component, and extend
their unification algorithm to take into account sortal information, but in a different
way from the former systems. SILO uses extensions similar to those in the latter
systems. All these systems, although increase efficiency, suffer from two main
drawbacks. First, they cannot represent exceptions and hence perform default
reasoning. Second, they do not impose any actual structure on the domain
knowledge, thus reducing naturalness. Their concepts (objects) are rather
unstructured.

The second category includes systems that extend the logic programming
paradigm to incorporate basic features from object-oriented programming, without
affecting logic's basic constructs and mechanisms. Thus, unification algorithm
remains unchanged and efficiency is not significantly improved. Also, their objects

lack the structure of SILO objects. Furthermore, most of them face the problem
from the programming point of view rather than that of knowledge representation.
E.g. systems like [31], POL [32], SPOOL [18] and LAP [33] employ a standard
class-based hierarchy model, which is not flexible enough for knowledge
representation. Systems like MULTILOG [34], [19] and Plog [35] organise logical
expressions in sets (objects) that communicate with each other via message passing
in a way similar to that in SILO. However, except in Plog, objects are organised in a
free way with no distinction between classes and instances. Also, systems like [36],
[37], [38] and CPU [39] use the notion of inheritance hierarchy to (dynamically)
organise sets of logical expressions with no communication between them, but they
come with a sound semantics. CPU is the only system that uses a kind of meta-level
knowledge to control inheritance. Most of the systems of this category have no
means to express attribute declarations. However, due to their programming
orientation, some of them support objects with a changing state during the course of
computation (mutable objects), whereas SILO does not.

A common characteristic of the systems of both categories is that they give pre-
eminence to logic, which is the basic reason of their drawbacks. There are, however,
a few systems that use logic within an object-based framework, such as
ORIENT84/K [40] and HSRL [41]. ORIENT84/K is a multi-paradigm system, that
is the object-oriented part and the logic-based part in an object are distinct and there
is an interface between them, via special variables. This way does not offer a
unified representation, whereas SILO does. HSRL is a limited integration of frames
and logic, by allowing Horn-type logical statements to be values of some slots,
stored in meta-frames. This system does not exploit all the advantages that logic can
offer, as SILO does. It takes a little from logic.

10. Conclusions

In this paper SILO, a general purpose hybrid knowledge representation
system/language that integrates logic and objects, is presented. It is an extension of
the work presented in [25, 42, 43, 44]. SILO gives pre-eminence to objects. Its
object model comprise elements from both the class-based and the frame-based
models. SILO uses separate representations for domain and control knowledge. An
integrated language, that consists of two components, is used for the description of
the domain knowledge in an object. The first component, called structure declaring
language (SDL), concerns description structural knowledge in an object, by
specifying its attributes and hierarchical links. The second component, a logic-based
language, called message passing logic (MPL), is used for the description of factual
and non-factual knowledge in an object concerning the values of its attributes. MPL
is an extended form of FOPC that borrows elements from many-sorted logic. Thus,
introduction of typed and evaluable increase expressiveness and conciseness of
representation. MPL also allows procedural attachment, so that procedural
representation is possible.

In SILO both the unification algorithm and the resolution procedure have been
extended. The unification algorithm has been extended in a way similar to that in
many-sorted logic, thus increasing efficiency of the deductions. It has also been
extended to accommodate evaluation of computable terms, that may involve

resolution attempts during unification. Resolution procedure has been extended to
mainly incorporate message passing. The new procedure is called message-based
resolution (MB-Resolution), where message passing plays a significant role.
Sending a message to an object means sending a theorem to be proved in the context
of the object.

From a logical point of view an object in SILO can be regarded as a theory.
Under this consideration the inheritance of axioms can be seen as one way of
expanding the theory. Thus, if a theorem cannot be proved from the local theory of
an object, the local theory is extended by inheriting theories stored in its super-
objects. The fact that some information may not be inherited from its super-objects,
because it is not valid in the context of the current object, gives SILO the capability
of default reasoning, as in all frame-based languages. Secondly, message passing
through message literals can be seen as a way of temporarily changing the current
theory (context) to that of the message recipient. Thus, apart from theory
extensions, through inheritance, SILO allows for theory changes on demand,
through message passing. So, both inheritance and message passing can be seen
acting as a kind of control theory (meta theory) of the domain knowledge in the
sense that they determine which propositions are used as axioms in a theorem
proving request. This gives SILO, in many cases, an efficiency comparable to that
of standard object-oriented programming languages.

Given the two types of a message, there are two modes of reasoning in SILO. In
the first, as traditional, reasoning is performed in the context of an instance-object
and is based on extensions of the initial theory via inheritance, thus going bottom-up
in the hierarchy. In the second, reasoning is performed within a class-object using
the essential axioms and is based on restrictions of the initial theory, rather than
extensions, via specialisation, thus going top-down in the hierarchy. This reduces
the number of instances to be searched.

SILO is a meta-level system. Its meta-level language, called control defining
language (CDL), consists in a number of definitions of certain functions, called
meta-functions, that can control deduction and inheritance processes.

There are, however, a number of missing characteristics from SILO, that may
give rise to extensions. First, SILO does not offer direct constructs for supporting
'part-of ' relations or, in other words, composite objects. Also, it cannot do any
classification, as e.g. systems with a terminological component can (essential
axioms could be used as a basis for an extension to this end). Finally, SDL cannot
express the fact that the type of a component value of an attribute is the conjunction
or the disjunction of two or more other types (operators like AND and OR could be
employed) as well as the range of its value.

A prototype of a basic core of SILO has been implemented in CommonLisp and
tested via a number of examples, but there is still implementational work to be done.
Since a potential problem of SILO might be the memory space required in cases of
complicated deductions, where a number of long chains of messages exist, our
future effort will be mainly focusing at implementing space efficient algorithms.

Acknowledgements

I would like to thank Han Reichgelt for useful discussions and Tony Cohn for some
useful remarks on an earlier version of this work.

References

[1] P. Jackson, H. Reichgelt and F. van Harmelen, eds, Logic-based Knowledge

Representation, MIT Press (1989).
[2] H. Reichgelt, Knowledge Representation: an AI perspective, Ablex, NJ (1991).
[3] G. Masini, A. Napoli, D. Colnet, D. Leonard and K. Tombre, Object Oriented

Languages, The APIC Series, Academic Press (1991).
[4] R. Fikes and T. Kehler, The role of frame-based representation in reasoning, CACM

28 (9) (1985) 904-920.
[5] M. Stefik and D.G. Bobrow, Object-oriented programming: themes and variations, AI

Magazine Winter 86 (1986) 40-62.
[6] M R. Genesereth and N. J. Nilsson, Logical Foundations of Artificial Intelligence,

Morgan Kaufmann, CA (1987).
[7] A. G. Cohn, Taxonomic reasoning with many-sorted logics, AI Review 3 (1989) 89-

128.
[8] K. Meinke and J. V. Tucker, eds, Many-sorted Logic and its Applications, John Wiley

& Sons (1993).
[9] Guy L. Steele Jr, CommonLISP: The Language, Digital Press (1984).

[10] W. Clancey, The advantages of abstract control knowledge in expert system design,
Proceedings of the 3rd Annual Meeting of the AAAI (1983) 74-78.

[11] F. van Harmelen, Meta-level Inference Systems, Pitman (1991).
[12] I. Hatzilygeroudis and H. Reichgelt, ACT-P: a configurable theorem-prover, Data &

Knowledge Engineering 12 (1994) 277-296.
[13] L. Aiello, C. Cecchi and D. Sartini, Representation and use of metaknowledge,

Proceedings of the IEEE 74 (1986) 1304-1321.
[14] B. Nebel and K. von Luck, Hybrid Reasoning in BACK, in Z.W. Ras and L. Saitta, eds,

Methodologies for Intelligent Systems 3, North-Holland (1988) 260-269.
[15] R. J. Brachman, "I Lied about the Trees" Or, Defaults and Definitions in Knowledge

Representation, AI Magazine Fall 85 (1985) 80-93.
[16] R. W. Weyhrauch, Prolegomena to a theory of mechanized formal reasoning, AI 13

(1980) 133-170.
[17] K. L. Myers, Universal Attachment: An integration method for logic hybrids,

Proceedings of the 2nd International Conference on Principles of Knowledge
Representation and Reasoning (KR'91), (1991) 405-416.

[18] K. Fukunaga and S. Hirose, An Experience with a Prolog-based Object-oriented
Language, Proc. of the OOPSLA'86 Conference, (1986) 224-231.

[19] F. G. McCabe, Logic and Objects, :Prentice Hall (1992).
[20] J. F. Allen and B. W. Miller, The Rhetorical Knowledge Representation System: A

User's Manual (for Rhet Version 1.4), Technical Report TR 238, University of
Rochester (1988).

[21] R. Ducournau and M. Habib, Masking and conflicts, or to inherit is not to own,
Inheritance Hierarchies in Knowledge Representation and Programming Languages,
eds, M. Lenzerini, D. Nardi and M. Simi, John Wiley & Sons (1991).

[22] I. Hatzilygeroudis and H. Reichgelt, Handling inheritance in a system integrating
logic in objects, paper submitted to the Data & Knowledge Engineering Int. Journal
(1996).

[23] P. Mello, Inheritance as combination of Horn clause theories, Inheritance Hierarchies
in Knowledge Representation and Programming Languages, eds, M. Lenzerini, D.
Nardi and M. Simi, John Wiley & Sons (1991) 275-289.

[24] C. Walther, A Many Sorted Calculus Based on Resolution and Paramodulation, :
Pitman, 1987.

[25] I. Hatzilygeroudis, Integrating Logic and Objects for Knowledge Representation and
Reasoning, PhD Thesis, University of Nottingham, UK (1992).

[26] M. E. Stickel, Schubert's Steamroller Problem: Formulations and Solutions, Journal
of Automated Reasoning 2 (1986) 89-101.

[27] G. Montini, Efficiency considerations on built-in taxonomic reasoning, Proceedings of
the 10th IJCAI, (1987) 68-75.

[28] R. J. Brachman, V. Pigman Gilbert and H. J. Levesque, An Essential Hybrid
Representation System: Knowledge and Symbol Level Accounts of KRYPTON,
Proceedings of the 9th IJCAI, (1985) 532-539.

[29] M. Vilain, The Restricted Language Architecture of a Hybrid Representation System,
Proceedings of the 9th IJCAI, (1985) 547-551.

[30] H. Ait-Kaci and R. Nasr, LOGIN: A Logic Programming Language with Built-in
Inheritance, Journal of Logic Programming 3 (1986) 185-215.

[31] C. Zaniolo, Object-Oriented Programming in Prolog, Proceedings of the 1984
International Symposium on Logic Programming, (1984) 265-270.

[32] H. Gallaire, Merging Objects and Logic Programming: Relational Semantics,
Proceedings of the AAAI'86, (1986) 754-758.

[33] H. Iline and H. Kanoui, Extending Logic Programming to Object Programming: The
System LAP, Proceedings of the 10th IJCAI, vol. I, (1987) 34-39.

[34] H. Kauffmann and A. Grumbach, MULTILOG: MULTIple worlds in LOGic
programming, Proceedings of the 7th ECAI, vol. I, (1986) 291-305.

[35] M. Jenkins and D. Chester, A combined object-oriented and logic programming tool
for AI, Proceedings of the 5th IEEE ICTAI (1993) 152-159.

[36] A. Borgi, E. Lamma and P. Mello, Inheritance and Hypothetical Reasoning in Logic
Programming, Proceedings of the 9th ECAI, (1990) 105-110.

[37] E. Laenens, D. Sacca and D. Vermeir, Extending Logic Programming, Proceedings of
the 1990 ACM SIGMOD Int. Conference on Management of Data, (1990) 181-193.

[38] L. Monteiro and A. Porto, A Transformational View of Inheritance in Logic
Programming, Proceedings of the 7th ICLP, (1990) 481-494.

[39] P. Mello and A. Natali, Objects as communication Prolog units, Proceedings of the
ECOOP'87, LNCS 276, Springer Verlag (1987) 181-191.

[40] M. Tokoro and Y. Ishikawa, An Object-oriented Approach to Knowledge Systems,
Proceedings of the FGCS'84, (1984) 623-631.

[41] B. Allen and J. M. Wright, Integrating logic programs and schemata, Proceedings of
the 8th IJCAI, (1983) 340-342.

[42] I. Hatzilygeroudis, Knowledge representation and reasoning in a system integrating
logic in objects, Proceedings of the 5th IEEE ICTAI (1993) 160-167.

[43] I. Hatzilygeroudis, A framework for integrating logic and objects for knowledge
representation and reasoning, Proceedings of the 9th International Symposium on
Computer and Information Sciences (ISCIS IX), Antalya, Turkey, (1994).

[44] I. Hatzilygeroudis and H. Reichgelt, The inheritance mechanism of a system
integrating logic in objects, Proceedings of the 6th IEEE ICTAI (1994) 724-727.

Appendix

Deduction Meta-functions

Inheritance Meta-functions

 select-l-literals/select-r-literals:
 Define the literals of the left/right parent clause to participate in the resolution
 process.

 construct-resolvent:
 Defines the way a resolvent is produced from its parent clauses.

 combine-points:
 Defines the general resolution space search strategy (blind or informed).

 detect-infinite-path:
 Defines strategies for detection of infinite paths in the resolution search space.

 check-resolvent:
 Defines strategies for pruning a branch in the resolution search space based on
the
 complexity of the literals or the clauses produced.

 termination-condition:
 Defines the conditions for terminating a resolution process (exhaustive,
 non-exhaustive search).

 l-inherit-axioms:
 Defines local inheritance rules, to satisfy local requirements.

 g-inherit-axioms:
 Defines global inheritance rules, to be followed by all objects.

 l-order-classes:
 Defines a local ordering strategy, to order the immediate (super)classes.

 g-order-classes:
 Defines a global ordering strategy, to change the default strategy.

