

Published in the International Journal on Artificial Intelligence Tools (IJAIT),
Vol. 9, No. 1 (2000) 113-130.

 Copyright World Scientific Pub 2000. All rights reserved.

NEURULES: IMPROVING THE PERFORMANCE
OF SYMBOLIC RULES

I. HATZILYGEROUDIS, J. PRENTZAS
University of Patras, School of Engineering

Dept of Computer Engin. & Informatics, 26500 Patras, Hellas (Greece)
Email: ihatz/prentzas@ceid.upatras.gr

&
Computer Technology Institute, P.O. Box 1122, 26110 Patras, Hellas (Greece)

ABSTRACT
In this paper, we present a method for improving the performance of classical symbolic rules.
This is achieved by introducing a type of hybrid rules, called neurules, which integrate
neurocomputing into the symbolic framework of production rules. Neurules are produced by
converting existing symbolic rules. Each neurule is considered as an adaline unit, where
weights are considered as significance factors. Each significance factor represents the
significance of the associated condition in drawing the conclusion. A rule is fired when the
corresponding adaline output becomes active. This significantly reduces the size of the rule
base and, due to a number of heuristics used in the inference process, increases efficiency of
the inferences.

Keywords: hybrid knowledge representation, hybrid inference, symbolic representation,
connectionist representation, production rules, neural networks.

1. Introduction

Most of existing expert systems are rule-based, that is the basis of their
knowledge representation (KR) language is symbolic rules, often called if-then
rules.1 This is due to the very important benefits that production rules offer to
knowledge representation and reasoning in expert systems, such as naturalness,
modularity and ease of explanation. Rules are a representative of what is called
symbolic representation.

Recently, popularity of using artificial neural networks (ANNs) in constructing
expert systems has significantly increased.2,3 A new category of expert systems,
called connectionist expert systems, has been emerged.4,5 ANNs provide a totally
different approach to knowledge representation and reasoning from traditional (i.e.
symbolic) AI. The main advantages of this approach are: representation of very
complex and imprecise relationships, learning from experience and computational
efficiency. ANNs are representatives of what is called connectionist or subsymbolic
representation.

Nowadays, there has been extensive research activity at combining (or
integrating) the symbolic and the connectionist approaches.6,7,8 Two major categories
of approaches to that integration have been distinguished, the unified and the
hybrid.9 The former is based on neural networks alone, whereas the latter on both the
symbolic and the connectionist representations. There are a number of efforts at
combining symbolic (classical or fuzzy) rules and neural networks for knowledge
representation. Some of them follow the unified approach,3,10,11,12 whereas others
follow a semi-hybrid approach.13,14,15,5 A weak point of both approaches is that the
resulted systems lack the naturalness, modularity and explanation capabilities of
symbolic rules.

The real hybrid systems include both, symbolic and connectionist structures and
processes, and achieve an effective interaction among them. An interesting
subcategory of real hybrids are those conforming to the subprocessing model, where
typically the connectionist part is embedded into the symbolic part that act as the
main problem solver.9 Existing efforts to combine rule-based representations and
ANNs that belong to this subcategory16,17 use a loose coupling between the two
components and serve different objectives. LAM17, an expert system for window
glazing design, uses ANNs as partial problem solvers to assist the main problem
solver, a rule-based system. Setheo16 is a logic-based system (a theorem prover) that
uses the ANNs approach to improve the performance of its inference mechanism. An
ANN is used to select the most promising node at each inference step in the search
space.

In this paper, we mainly introduce a method for improving the performance of
classical symbolic rules. This is achieved via neurules, a hybrid rule category also
introduced here, that incorporate neurocomputing within the symbolic framework of
production rules, in a way that increases their efficiency. Neurules are produced by
converting existing symbolic rules. Our effort has a similar objective with that in
Setheo: to use ANNs to improve performance of a symbolic representation.
However, we achieve it by a uniform and tight integration of a symbolic component
(production rules) and a connectionist one (the adaline unit) rather than a loose one.
This paper is a revised and extended version of the one presented at ICTAI’99.18

The structure of the paper is as follows. Section 2 presents the hybrid formalism
and corresponding system architecture. In Section 3, the algorithm for converting a
symbolic rule-base into a hybrid one is described. Section 4 deals with the inference
mechanism as well as various inference heuristics. An example illustrating the
inference process of the integrated formalism is presented in Section 5 and
experimental results in Section 6. Finally, Section 7 concludes.

2. The Hybrid Formalism

2.1. Neurules

We introduce neurules (: neural rules), a kind of hybrid rules19. Each neurule is
considered as an adaline unit (Fig.1a). The inputs Ci (i = 1...n) of the unit are the
conditions of the rule. Each condition Ci is assigned a number sfi, called a
significance factor, corresponding to the weight of the corresponding input of the
adaline unit. Moreover, each rule itself is assigned a number sf

0
, called the bias

factor, corresponding to the weight of the bias input of the unit (C
0
= 1, not

illustrated in Fig.1 for the sake of simplicity).
Each input takes a value from the following set of discrete values:

 1 if condition is true
 Ci = 0 if condition is false (1)
 0.5 if value is unknown

This gives the opportunity to easily distinguish between the falsity (C
i
= 0) and the

absence (C
i = 0.5) of a condition, in contrast to symbolic rules. The choice of this set

of values is strongly related to the inference heuristics, introduced in Section 4.2.
This means that if they change, the heuristics may not be still valid.

The output D, which represents the conclusion (decision) of the rule, is
calculated via the formulas:

 D = f(a) , a = sf + sf C
0 i i

i=1

n
 ∑ (2)

as usual 2,3, where a is the activation value and f(x) the activation function, which is
a threshold function (Fig.1b). Hence, the output can take one of two values, ‘-1’ and
‘1’, representing ‘failure’ and ‘success’ of the rule respectively.

Fig. 1. (a) a neurule

C1 C2

(sf1)
(sf2)

(sfn)

(sf0)

D

(a

f(x)

x

1

0
. . .
as an adaline unit (b) the activation function

Cn
)

-1

(b)

2.2. Syntax and semantics

The general syntax (structure) of a rule is:

<rule> ::= [(<bias-factor>)] if <conditions> then <conclusions>
<conditions> ::= <condition> {, <condition>}
<conclusions> ::= <conclusion> {, <conclusion>}
<condition> ::= <variable> <l-predicate> <value-object>
 [(<significance-factor>)]
<conclusion> ::= <variable> <r-predicate> <value-object>.

By <variable> a variable is denoted, that is a symbol representing a concept in the
domain, e.g. “sex”, “pain” in a medical domain. We distinguish three types of
variables:

• askable variables, that is variables for which the user will be prompted to
give a value.

• goal variables, that is variables constituting the goals of the inference
process.

• inferable variables, that is variables constituting intermediate goals of the
inference process.

All variables are single-valued, that is they can take only one value at a time, and
their values are disjoint, that is the one excludes the others.

By <l-predicate> a symbolic or a numeric predicate is denoted. The symbolic
predicates are {is, isnot}, whereas the numeric predicates are {<, >, =}. Conditions
including the ‘is’ (resp. ‘isnot’) predicate are called is-conditions (resp. isnot-
conditions). <r-predicate> can only be a symbolic predicate. <value-object> denotes
a value. It can be a symbol or a number. Finally, <bias-factor> and <significance-
factor> are real numbers. The significance factor of a condition represents the
significance (weight) of the condition in drawing the conclusion(s). So, the semantics
of significance factors is quite different from that of certainty factors or probabilities.

 R1: N1:
 if sex is man , (-8) if pain is continuous (5) ,
 age > 20 , patient_class isnot man36_55 (2.5) ,
 age < 36 fever is medium (2) ,
 then patient_class is man21_35 fever is high (2)
 then disease_type is inflammation

 (a) (b)

Fig. 2. An example (a) symbolic rule and (b) neurule

The significance factors and the bias factor are optional in a rule (which is
denoted by ‘[]’). Thus, neurules (with factors) and symbolic rules (without factors)

are equally supported by the representation formalism. (The terminal symbol “,” in
the case of a symbolic rule denotes a conjunction). Two example rules, a symbolic
and a neurule, from a medical diagnosis domain, are presented in Fig.2.

We distinguish between two types of neurules, the negative-bias and positive-bias
rules. A negative-bias rule has a negative bias factor (sf

0
 < 0), whereas a positive-

bias rule a positive bias factor (sf
0 > 0).

2.3. The hybrid architecture

In Fig.3, the functional architecture of the hybrid rule-based system to implement the
method for improving the performance of symbolic rules is presented. The run-time
system (in the dashed rectangle) consists of three modules, functionally similar to
those of a conventional rule-based system: the hybrid rule base (HRB), the hybrid
inference mechanism (HIM) and the working memory (WM).

Fig. 3. The hybrid rule-based architecture

The HRB contains neurules and symbolic rules, produce
symbolic rule base (SRB) via the conversion mechanism (
only symbolic rules. The produced neurules are traine
reorganizing mechanism (TRM). The functionality of the
explained in Section 3. So, production of the neurules takes

HIM is responsible for making inferences by taking
conditions in the WM and the rules in the HRB. HIM is disc

WM

HRB HIM

MCMSRB

initial
conditions

final
conclusions

traini
sets

facts

symbolic
rules

symbolic rules
and neurules
TR
d by conversion from the
CM). The SRB contains
d via the training and
 CM and the TRM are
place before run-time.
into account the initial

ussed in Section 4.

ng

WM contains facts. A fact has the same format as a condition/conclusion of a
rule. However, it can additionally have as value the special symbol ‘unknown’. Facts
represent either initial conditions or intermediate/final conclusions produced during
the course of an inference.

3. Converting Symbolic Rules to Neurules

As mentioned, the HRB is constructed by converting rules in the SRB to neurules.
Conversion of a symbolic rule base into a hybrid rule base is achieved via the
symbolic-to-hybrid conversion algorithm, outlined below:

(1) Construct merger sets from the SRB and form mergers. Put the non-merging
rules in the HRB.

(2) For each merger, specify its training set, by selecting rows from the combined
truth table of its merging rules.

(3) Train each merger and produce one or more neurules and possibly one or
more remaining (symbolic) rules. Put the remaining rules in the HRB.

(4) Reorganize the conditions of the produced neurules and join them with the
non-merging and remaining rules into the HRB.

In the sequel, we elaborate on each step of the algorithm.

3.1 Merging symbolic rules

A knowledge base (SRB) is initially constructed using only symbolic rules, either by
interviewing experts or from domain data using machine learning techniques (like
e.g. the ID3 algorithm). Then, the SRB is converted into the HRB via the CM.

S
a me
rule
non-

merger neurule

merging training

merger set
m34
R3

if C1,

 C2

then D
ymbolic rul
rger set. Th

s with a uniq
merging rul
R4

if C1,

 C3

then D

Fig. 4. Transformi

es with the same con
us, a number of merg
ue conclusion do not
es. Then, rules in ea

training

M34

(0) if C1(0),

 C2 (0),

 C3 (0)

 then D

ng a merger set into a neurule

clusion, called merging r
er sets are produced fro
 participate in a merger s
ch merger set form a me

set
N34

(-2.5) if C1(2),

 C2 (1),

 C3 (1)

 then D
ules, are selected into
m the SRB. Symbolic
et, they constitute the
rger, which is a rule

having as conditions the conditions of all the rules in the corresponding merger set.
A simple example is illustrated in Fig.4, where the merging rules R3 and R4, elements
of the merger set m34 ={R3, R4}, are merged into merger M34 (zeros are initial values
assigned to the factors).

3.2. Training sets specification

Before training, the training set of each merger is determined by selecting rows from
the combined truth table of the rules in the corresponding merger set. The combined
truth table is produced from the combined logical function of the rules, which is the
disjunction of the conjunctions of the conditions of them. For example, the combined
logical function of the rules in the merger set of Fig.4 is ((C1 AND C2) OR (C1
AND C3)) ≡ (C1 AND (C2 OR C3)). The training set of a merger consists of
training patterns, which are lists of the form [v1 v2 … vn d], where vi, i= 1,…,n are the
condition values and d the (desired) output value. For example, the training set of
M34 in Fig. 4 was T= ([1 0 0 -1], [1 1 0 1], [0 1 1 -1], [1 0 1 1])

Due to domain specific reasons, not all of the rows of a combined truth table are
valid for training the corresponding merger. So, a selection should be made. Valid
training set selection is the guarantee that the produced HRB is correct and
equivalent to the SRB. Therefore, we devised a number of criteria to remove invalid
rows. First, we introduce the notion of related conditions:
� Two conditions are related if they refer to the same variable.

For example, “fever is low” and “fever is high” are related conditions, because they
refer to the same variable ‘fever’. Now, we introduce the following invalid-row
criteria:

• Related is-conditions (resp. isnot-conditions) cannot be simultaneously true
(resp. false).

• Related is-conditions (resp. isnot-condidtions) with exhaustive values cannot
be simultaneously false (resp. true).

• An is-condition and an isnot-condition that are related and have the same
value (e.g. “fever is high”, “fever isnot high”) cannot be simultaneously true.

We further introduce a non-literally detected invalid-row criterion, that is one that
needs expert’s help:

• Two conditions are inconsistent if they cannot really happen to be
simultaneously true, due to pragmatic reasons.

Rows that do not meet the above criteria, should be removed from the truth table,
and not used in the training set.

For example, consider the rules “if C1, C2 then D”, and “if C3, C4 then D”,
which constitute a merger set, and their combined logical function, ((C1 AND C2)
OR (C3 AND C4)). If C1 ≡ “fever is high” and C3 ≡ “fever is low”, then they are
related is-conditions, as they refer to the same variable ‘fever’. Thus, four rows in the
truth table of the combined function that have ‘1’ in the places of both C1 and C3

should be removed. If C2, C4 are also related conditions, three more rows are
removed. If C1 is inconsistent with C4, one more row is removed.

So, the remaining rows, after application of the invalid-row criteria to the
combined truth table of a merger, constitute the training set of the merger. It is clear
from the above example, that the number of the training patterns in a training set can
be significantly reduced compared to those in the truth table. So, application of the
invalid-row criteria makes training, apart from valid, less complex and less time
consuming.

3.3. Training mergers

After the above has been done, each merger is individually trained via the TRM,
using its training set, to produce one or more neurules (see Fig. 4) and possibly one
or more symbolic rules. The standard least mean square (LMS) learning algorithm is
employed to calculate the values of the factors to be assigned to each neurule.

However, there are cases where the LMS algorithm fails to specify the right
significance factors for a number of neurules. That is, the corresponding adaline
units of those rules do not correctly classify some of the training patterns. This
means that the patterns in the training set correspond to a non-separable (boolean)
function.It is known that the adaline model cannot fully represent such functions.2,3

To overcome this problem, we successively split the corresponding merger sets
into subsets until the right factors are determined. Splitting is made in a way that the
produced subsets contain close rules, that is rules with as more common or related
conditions as possible. So, two or more neurules may be produced. In such a
situation, a merger subset may contain just one symbolic rule. This is a remaining
rule. Thus, an initial merger set with a non-separable training set will produce more
than one neurule and possibly one or more symbolic rules (remaining rules).
Hence,step 3 in the symbolic-to-hybrid conversion algorithm is analyzed as follows:

3.1 Train each merger using the corresponding training set.
3.2 If training fails split its merger set in two subsets of comparable size, such

that the rules in each subset have as more common or related conditions as
possible.

3.3 For each merger subset, apply step 3.1 recursively until either training
succeeds or the merger subset becomes a singleton (remaining rule).

3.4. Reorganizing neurules

After training, the conditions of a neurule are distributed between two groups, the
negative group and the positive group. The negative group includes the conditions
with negative significance factors, whereas the positive group those with positive
factors. The conditions in the positive group of a negative-bias rule are ranked in
descending order, according to the values of their significance factors. Furthermore,
the conditions in its negative group are put in front of those in its positive one.

Similarly, the conditions in the negative group of a positive-bias rule are ranked in
ascending order. Also, the conditions in its positive group are put in front of those in
its negative group. Reorganization of the neurules is done to support the inference
heuristics introduced in Section 4.2.

4. The Hybrid Inference Mechanism

4.1. Basic terminology

The hybrid inference mechanism (HIM) is based on a backward chaining strategy.
There are two stacks used, a goal stack (GS), where the current goal (condition) Gc
to be matched is always on its top, and a rule stack (RS), where the current rule Rc
under evaluation is always on its top. The conflict resolution strategy, due to
backward chaining and the neurules, is based on textual order. A rule succeeds if it
evaluates to ‘true’, that is all of its conditions evaluate to 'true', in the case of a
symbolic rule, or its output is computed to be ‘1’ after evaluation of its conditions, in
the case of a neurule.

A condition evaluates to ‘true’, if it matches a fact in the WM, that is there is a
fact with the same variable, predicate and value. A condition evaluates to ‘unknown’,
if there is a fact with the same variable, predicate and ‘unknown’ as its value. A
condition cannot be evaluated if there is no fact in the WM with the same variable.
In this case, either a question is made to the user to provide a value for the variable,
in the case of an askable variable, or a rule in the HRB with a conclusion containing
that variable is examined, in case of an inferable variable. A condition evaluates to
‘false’ if there is a fact in the WM with the same variable, predicate and different
value, in case of an askable variable, and additionally there is no rule in the HRB
that has a conclusion with the same variable, in case of an inferable variable.
Inference stops either when a rule with a goal variable is fired (success) or there is no
further action (failure).

4.2. Inference heuristics

To increase inference efficiency, a number of heuristics are used. Most of them are
based on the selected condition values (see formula (1), Section 2.1) and the
activation function (see Fig.1b). We should mention that the activation value is
incrementally computed, that is contribution of each condition to the weighted sum
in formula (2) (Section 2.1) is added immediately after its evaluation.

4.2.1. Ordered condition evaluation
There are different strategies followed for the evaluation of the negative-bias and the
positive-bias rules. When computing the activation value of a negative-bias rule, first
the conditions in the negative group are evaluated and then those in the positive
group. Thus, during evaluation of the conditions in the positive group, as soon as the

result exceeds the threshold (0), evaluation stops and the output gets the value ‘1’
(‘true’). This is so, because it cannot change in any case, if proceed. Also, since the
conditions in the positive group of a negative-bias rule are ranked in a descending
order, the positively ‘heavier’ conditions are first evaluated, then the ‘lighter’, thus
speeding up the computation.

When computing the activation value of a positive-bias rule, first the factors in
the positive group are evaluated and then the factors in the negative group. Thus,
during evaluation of the conditions in the negative group, as soon as the result
becomes less than the threshold (0), evaluation stops and the output gets the value ‘-
1’ (false). Again, this is so, because it cannot change in any case, if proceed. Also,
since the conditions in the negative group of a positive-bias rule are ranked in
ascending order, the negatively ‘heavier’ conditions are first evaluated, then the
‘lighter’, thus speeding up the computation.

4.2.2. Remaining sum criterion
The remaining sum criterion is a generalization of the ‘critical condition situation’
heuristic.20,19

Fig. 5. Remain

In the case of a negative-bias rul
has been evaluated, the weighted sum
that is the sum of the factors of th
evaluated yet. If |a| > sum, then it is
will evaluate to ‘-1’ (‘false’), even if
the remaining conditions in the pos
evaluation stops.

Similarly, in the case of a positive
remaining sum of the factors of the
been evaluated. If a > |sum|, then it is
will evaluate to ‘1’ (‘true’), even if a

N5

(-8.5) if C1(4),
 C2 (3),
 C3 (2),
 C4 (2),
 C5 (2),
 C6 (1)
 then D

(tr

C1

C

C3

Ci
ue/false)

a sum (a-sfi)

- -8.5 14

ing sum criterion example

e, as soon as a condition in the positive group
 (a) is compared to the remaining sum (sum),

e conditions in the group that have not been
certain that a will remain negative and the rule
 all remaining conditions evaluate to ‘true’. So,
itive group do not have to be evaluated and

-bias rule, the weighted sum is compared to the
conditions in the negative group that have not
 certain that a will remain positive and the rule
ll remaining conditions fail. So, the remaining

 (false)

2 (true)

 (false)

-8.5

-5.5

-5.5

10

7

5

 |-5.5| > 5: evaluation stops (failure)

conditions in the negative group do not have to be evaluated and evaluation stops.
The table in Fig.5 shows a tracing of the evaluation of the conditions of neurule N5,
based on this heuristic.

4.2.3. Related conditions situation
The last heuristic concerns related conditions in a neurule. If one of the related is-
conditions of a neurule evaluates to ‘true’, the others fail, since their values are
disjoint. For example, in neurule N1 in Fig.2, if “fever is medium” evaluates to ‘true’,
there is no need to evaluate the condition “fever is high”, because it certainly fails.
Also, if one of them evaluates to ‘unknown’, the rest evaluate to ‘unknown’ too.

4.3. The inference process

In this section, we present the inference process of the integrated formalism,
performed by the HIM, via the definitions of the procedures: MAIN, STACK-SET,
RULE-SEARCH, RULE-EVAL, SYMB-EVAL and NEUR-EVAL below. In the
following, aRc represents the activation value (i.e. the weighted sum) of the current
neurule, and CRc represents the condition of the current neurule where evaluation is
suspended, to search for a rule to evaluate the condition. For the sake of simplicity,
rules with only one conclusion are supposed and the related condition situation
heuristic is not supported.

MAIN (G0)
1. Put the initial goal (G0) on GS
2. While RULE-SEARCH returns ‘true’
 2.1 Call STACK-SET
3. Stop (failure).

STACK-SET
1. While RULE-EVAL(Rc) returns ‘true’

1.1 Remove Rc from RS
1.2 Move Gc to WM
1.3 If GS is empty

1.3.1 Stop (success).
2. Remove Rc from RS

RULE-SEARCH
1. For each Ri in the HRB

1.1 If Ri matches Gc
1.1.1 Set Rc = Ri ; CRc = ∅
1.1.2 Return ‘true’

1.2 Return ‘false’.

RULE-EVAL(Rc)

1. If Rc is a symbolic rule
1.1 Call SYMB-EVAL.

2. Call NEUR-EVAL

SYMB-EVAL(Rc)
1. For each Ci of Rc

1.1 If Ci cannot be evaluated
1.1.1 Make Gc = Ci
1.1.2 Call RULE-SEARCH
 1.1.2.1 If it returns ‘false’, stop (failure).

2. Return 'true'.

NEUR-EVAL(Rc)
1. If CRc = ∅

1.1. set aRc = sf0.
1.2. If sf

0
 > 0, set sum = .

1.3. If sf
0
 < 0, set sum = .

2. For each Ci of Rc after CRc
2.1 If sf

0
 * sfi < 0, set sum = sum + (-sfi)

2.2 If Ci cannot be evaluated,
2.2.1. Set Gc = Ci ; CRc = Ci
2.2.2. Call RULE-SEARCH

2.2.2.1. If it returns ‘false’, go to 2.5
2.2.2.2. Call STACK-SET.

2.3 If Ci evaluates to ‘true’
2.3.1. Make aRc = aRc + sfi,
2.3.2. If sf

0
 < 0 and sfi > 0, go to 2.5

2.4 If Ci evaluates to ‘unknown’
2.4.1. Make aRc = aRc+ 0.5*sfi, go to 2.5

2.5 If aRc > 0, return ‘true’.
2.6 If sf

0
 > 0 and sfi < 0 and |sum| < aRc

2.6.1. Return ‘true’.
2.7 If sf

0
 < 0 and sfi > 0 and sum < |aRc|

2.7.1. Return ‘false’.
3. Return ‘false’.

5. An Example

We present a simple example that illustrates how inference is performed in our
hybrid formalism.

Fig. 6a. Symbolic inference

sf i
<0isf
∑

sfi
>0isf
∑

Let consider the following SRB.
 R1: if C2 , C1 then D1

 R2: if C3 , C1 then D1
 R3: if D1 , C4 then D2
 R4: if D1 , C5 then D2
 R5: if D2 , C6 then D

Suppose that WM = {C1, C3, C5, C6} and our (initial) goal is D. The symbolic
inference steps to prove D are illustrated in Fig.6a (top-down), where a solid arrow
means “puts on” the target stack and a dashed arrow means “evaluates to”.

Fig. 6b. Hybrid inference

The HRB, after merging {R1, R2} and {R3, R4}, is:

N12: (-2.5) if C1 (2) , C2 (1) , C3 (1) then D1
N34: (-2.5) if D1 (2) , C4 (1) , C5 (1) then D2

R5: if D2 , C6 then D

The hybrid inference steps to prove D are illustrated in Fig.6b (top-down). It is clear
that symbolic inference is more expensive than the hybrid one. It should be also
noticed that hybrid inference is much less dependent on the order of the rules than
symbolic inference. For example, if R1 and R2 as well as R3 and R4 were
interchanged the symbolic inference would be shortened, whereas interchange of
N12 and N34 would make no difference for the hybrid inference.

6. Experimental Results

The symbolic-to-hybrid conversion algorithm was applied to two medical rule bases
consisting of fifty-nine (59) and one-hundred-thirty-four (134) symbolic rules
respectively. These initial symbolic rule bases will be referred to as SRB1 and SRB2
respectively, whereas the resulting hybrid rule bases as HRB1 and HRB2.

Eighteen (18) of the symbolic rules in SRB1 had a unique conclusion and thus
couldn’t be merged (non-merging rules). The rest forty-one (41) rules formed ten
merger sets. From those, four had to split. Two of them were split in two and the
other two in three subsets. From the so formed ten subsets, four were singletons
(remaining rules). Finally, the total number of rules in the HRB1 was thirty-four
(34), twenty-two (22) symbolic rules and twelve (12) neurules. So, we had an over
40% reduction in the number of the rules. All of the neurules were negative-bias
rules. It should be noted that, due to the invalid-row criteria, over 38%, in average,
of the rows of the combined truth tables of the merging sets were removed.

Table 2. SRB1 vs. HRB1 inferences

Rules Visited Conditions

Evaluated Inference
No Symb. / Hybr. Symb. / Hybr.

Decision

1 2 / 2 6 / 6 Inflammation
2 5 / 3 12 / 11 Inflammation
3 9 / 4 15 / 12 Inflammation
4 25 / 12 35 / 31 Arthritis
5 22 / 9 41 / 27 Prim. Malignant
6 22 / 12 46 / 35 Prim. Malignant
7 30 / 13 46 / 33 Prim. Malignant
8 41 / 18 50 / 35 Dec. Metabolical
9 53 / 27 67 / 64 Second. Malignant

Total 209 / 100 318 / 254

Thirty-seven (37) of the symbolic rules in the SRB2 had a unique conclusion and
thus couldn’t be merged (non-merging rules). The rest ninety-seven (97) rules
formed twenty merger sets. From those, thirteen had to be split. From the resulting
subsets thirty were singletons (remaining rules). The splitting degree of the merger

sets was higher here than SRB1, due to the fact that their rules had fewer common
conditions. Finally, the total number of rules in the HRB2 was ninety (90), sixty-
seven (67) symbolic and twenty-three (23) neurules. So, we had an over 30%
reduction in the number of rules, which is less than the one in HRB1, because of the
higher splitting degree. Once again, all of the neurules were negative-bias rules. Due
to the invalid-row criteria, over 39%, in average, of the rows of the combined truth
tables were removed.

Table 3. SRB2 vs. HRB2 inferences

Rules Visited Conditions
Evaluated Inference

No Symb. / Hybr. Symb. / Hybr.

Decision

1 5 / 3 15 / 12 Early-inflammation
2 9 / 5 19 / 13 Early-inflammation
3 13 / 6 38 / 16 Inflammation-or-benign-tumor
4 29 / 10 61 / 36 Soft-tissue-inflammation
5 34 / 15 39 / 26 Soft-tissue-inflammation
6 38 / 17 48 / 32 Soft-tissue-inflammation
7 45 / 21 106 / 54 Very-early-bone-inflammation
8 50 / 22 122 / 62 Soft-tissue-early-bone-

inflammation
9 55 / 26 67 / 44 Soft-tissue-bone-inflammation

10 62 / 30 82 / 54 Early-soft-tissue-inflammation
11 76 / 41 157 / 92 Bone-inflammation-or-benign-

tumor
12 89 / 51 183 / 125 Intensive-soft-tissue-early-bone-

inflammation
13 94 / 56 177 / 117 Intensive-soft-tissue-with-early-

bone-inflammation
14 100 / 60 195 / 132 Osteomelitis-or-benign-tumor
15 106 / 64 144 / 100 Early-soft-tissue-and-bone-

inflammation
16 110 / 68 166 / 117 Tumor-or-bone-inflammation
17 114 / 71 171 / 126 Bone-tumor-or-very-intensive-

bone-inflammation
18 118 / 75 149 / 108 Retracted-or-early-bone-

inflammation-or-benign-tumor
19 122 / 79 166 / 128 Malignant-or-vessel-enriched-

benign-tumor
20 126 / 82 162 / 122 vessel-enriched-malignant-tumor-

osteosarcoma
21 130 / 86 134 / 99 Benign-bone-neoplasia
22 134 / 90 154 / 120 Normal-radionucleus-study

Total 1659 / 978 2555 / 1735

Inferences were proved to be equivalent for both cases in both bases, that is we
had the same conclusions for the same variable-value data both in the symbolic and
the hybrid cases in both bases. Equivalence is basically guaranteed by the fact that
the neurules are trained with valid data from the combined truth table of the merging
rules. However, inferences from SRB1 and SRB2 were proved to be longer, in terms
of the rules visited, and more expensive, in terms of the conditions evaluated (which
is a stronger evidence), than the corresponding ones from the HRB1 and HRB2. In
Tables 2 and 3, a number of experimental results supporting this fact are presented.

As it is clear from the tables, in general, the number of visited rules in the hybrid
case is much less than the one in the symbolic case. There is an average reduction of
over 50% in the rules visited in the hybrid case in Table 2. This is not however
directly reflected to the evaluated conditions. In average, there is only a reduction of
about 20% in the evaluated conditions. This is mainly due to the fact that in the
symbolic case failure of just one condition rejects the rule from further
consideration, whereas in the hybrid case usually more than one condition (at least
those as far as remaining sum criterion is fulfilled) should fail. Similarly, there is an
over 40% average reduction in the rules visited and an over 30% in the conditions
evaluated in the hybrid case in Table 3. There is a better reflection here, because of
the larger number of rules. Also, in general, the longer an inference is the better the
result is in the hybrid case.

7. Conclusions

In this paper, we mainly introduce a method for improving the performance of
classical symbolic rules. This is achieved via neurules, a kind of hybrid rules, also
introduced here.

Neurules integrate production rules and the adaline neural unit and are produced
by converting symbolic rules from a symbolic knowledge base. In this way, the
number of the rules in the knowledge base is drastically reduced, since each neurule
is actually a merger of more than one symbolic rule.

On the other hand, inferences are more efficient for two reasons. First, the
number of participating rules has been drastically reduced. Second, the number of
the evaluated conditions has been also significantly reduced, due to embedded
heuristics.

The adaline unit and the LMS algorithm are not of the most powerful existing
mechanisms. The adaline unit cannot represent non-separable training patterns, so
symbolic rules with the same conclusion may not be transformed into a single
neurule. This is a weak point of the formalism as well as a good reason for further
investigation. One could think of more complex neurules, e.g. made of a two layer
neural net.

On the other hand, neurules retain in a large degree the benefits of symbolic
rules, such as naturalness and modularity. Indeed, neurules are understandable, since
each significance factor in a neurule represent the contribution of the corresponding

condition in drawing the conclusion. Also, one could add new or remove old
neurules without much bothering about making any technical changes to the
knowledge base. So, neurules could be considered as a new knowledge
representation formalism. What is missing is a direct way of producing them from
empirical data. This is one of our current research directions.21

References

[1] B. G. Buchanan and E. H. Shortliffe, Rule-Based Expert Systems, Eddison-Wesley,
Reading, MA (1984).

[2] R. Hect-Nielsen, Neurocomputing, Addison-Wesley, Reading, MA (1990).
[3] S. I. Gallant, Neural Network Learning and Expert Systems, MIT Press (1993).
[4] S. I. Gallant, Connectionist Expert Systems, CACM, 31 (1988) 152-169.
[5] B. Boutsinas and M. N. Vrahatis, Nonmonotonic Connectionist Expert Systems, Proc.

2nd WSES/IEEE/IMACS International Conference on Circuits, Systems and Computers,
Athens, Hellas (Oct. 1998).

[6] R. Sun and L. Bookman (Eds), The Working Notes of the AAAI Workshop on Integrating
Neural and Symbolic Processes: The Cognitive Dimension, San Jose, California (July
1992).

[7] L. M. Fu (Ed), Proceedings of the International Symposium on Integrating Knowledge
and Neural Heuristics (ISIKNH’94), Pensacola, FL (May 1994).

[8] R. Sun and E. Alexandre (Eds), Connectionist-Symbolic Integration: From Unified to
Hybrid Approaches, Lawrence Erlbaum (1997).

[9] M. Hilario, An Overview of Strategies for Neurosymbolic Integration, ch.2 in [8].
[10] R. Sun, Integrating Rules and Connectionism for Robust Commonsense Reasoning,

Sixth-Generation Computer Technology, John Wiley & Sons (1994).
[11] R. R. Yager, Modelling and formulating fuzzy knowledge bases using neural networks,

Neural Networks 7(8) (1994) 1273-1283.
[12] A. Z. Ghalwash, A Recency Inference Engine for Connectionist Knowledge Bases,

Applied Intelligence 9 (1998) 201-215.
[13] L-M Fu and L-C Fu, Mapping rule-based systems into neural architecture, Knowledge-

Based Systems 3 (1990) 48-56.
[14] F. Kozato and Ph. De Wilde, How Neural Networks Help Rule-Based Problem Solving,

Proceedings of the ICANN’91 (1991) 465-470.
[15] J. M. Keller and H. Tahani, Implementation of conjuctive and disjunctive fuzzy logic

rules with neural networks, International Journal of Approximate Reasoning 6(2) (1992)
221-240.

[16] R. Letz, S. Bayerl and W. Bibel, Setheo: A high-performance theorem prover, Journal of
Automated Reasoning 8(2) (1992) 183-212.

[17] L.R. Medsker, Hybrid Neural Networks and Expert Systems, Kluwer Academic
Publishers, Boston (1994).

[18] I. Hatzilygeroudis and J. Prentzas, Neurules: Improving the Performance of Symbolic
Rules, Proceeedings of 11th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI’99), Chicago, IL (Nov. 1999) 417-424.

[19] I. Hatzilygeroudis, J. Prentzas, Neurules: Integrating Symbolic Rules and
Neurocomputing, Proceedings of the 7th Hellenic Conference on Informatics, Ioannina,
Hellas (Aug. 1999) V52-V60.

[20] I. Hatzilygeroudis, Integrating rules and neurocomputing for knowledge representation,
in [7] (1994) 40-46.

[21] I. Hatzilygeroudis and J. Prentzas, Producing Modular Hybrid Rule Bases for Expert
Systems, Proceedings of the 13th International FLAIRS Conference, Orlando, FL (May
2000) (forthcoming).

