
Published in the Proceedings of the 14th IEEE International Conference on AI Tools (ICTAI-02), 4-6 Nov. 2002, 
Washington, DC, USA, 9-15. 

Copyright 2002, IEEE Computer Society (http://www.ieee.org). All rights reserved. 

 

Updating a Hybrid Rule Base with New Empirical Source Knowledge 
 
 

Jim Prentzas, Ioannis Hatzilygeroudis, Athanasios Tsakalidis 
University of Patras, School of Engineering 

Dept of Computer Engin. & Informatics, 26500 Patras, Hellas (Greece) 
& 

Computer Technology Institute, P.O. Box 1122, 26110 Patras, Hellas (Greece) 
{prentzas, ihatz}@ceid.upatras.gr, {ihatz, tsak}@cti.gr 

 
 

Abstract 
 

Neurules are a kind of hybrid rules that combine a 
symbolic (production rules) and a connectionist (adaline 
unit) representation. Each neurule is represented as an 
adaline unit. One way that the neurules can be produced is 
from training examples (empirical source knowledge). 
However, in certain application fields not all of the 
training examples are available a priori. A number of 
them become available over time. In these cases, updating 
the corresponding neurules is necessary. In this paper, 
methods for updating a hybrid rule base, consisting of 
neurules, to reflect the availability of new training 
examples are presented. The methods are efficient, since 
they require the least possible retraining effort and the 
number of the produced neurules is kept as small as 
possible.  
 
 
1. Introduction 
 

There has been extensive research activity at combining 
(or integrating) the symbolic and the connectionist 
approaches for knowledge representation in expert systems 
[3, 15, 16, 19]. Especially, there are a number of efforts 
combining symbolic rules and neural networks that map 
rules into neural networks [4, 9, 18]. In addition, 
connectionist expert systems [6, 7, 17] are a type of 
integrated systems that represent relationships between 
concepts, considered as nodes of a neural network. The 
above approaches give pre-eminence to connectionism and 
use a neural network as a knowledge base. The strong 
point of those approaches is that knowledge elicitation 
from experts is reduced to a minimum. A weak point is 
that their knowledge base lacks the naturalness and 
modularity of symbolic rules; it is incomprehensible. 
Therefore, often explanations are provided in the form of 
if-then rules by rule extraction methods [1]. 

Neurules [10] integrate symbolic rules and 
connectionism, but in a different way. They give pre-
eminence to the symbolic component. Neurocomputing is 

used within the symbolic framework to improve the 
performance of symbolic rules. The constructed 
knowledge base retains the modularity of production rules, 
since it consists of autonomous units (neurules), and also 
retains their naturalness in a great degree, since neurules 
look much like symbolic rules. Also, the inference 
mechanism is a tightly integrated process, which results in 
more efficient inferences than those of symbolic rules and 
explanations in the form of if-then rules can be produced 
[12].  

One way that the neurules, called the target knowledge, 
can be produced is from training examples [11], called the 
empirical source knowledge. However, in certain 
application fields (e.g. user modeling/profiling, intelligent 
agents, intelligent user interfaces and robotics) not all of 
the training examples are available a priori. A number of 
them become available over time. This happens either 
because the environment changes with time or because the 
rate at which examples become available may be too slow 
[8]. Therefore, methods should be developed for the 
various types of classifiers dealing with this problem [5]. 
These methods may or may not require re-examination of 
all or part of the empirical source knowledge [14]. The 
methods must be effective as far as the retraining effort 
and the size of the target knowledge are concerned.  

In this paper, we present methods for efficient 
maintenance of the target knowledge, due to changes to 
the empirical source knowledge of a neurule-based expert 
system. Section 2 presents neurules. The methods are 
introduced in Section 3. Section 4 gives some examples 
and Section 5 presents experimental results. Finally, 
Section 6 concludes. 

 
2. Neurules 
 
2.1 Syntax and semantics 

 
Neurules are a kind of hybrid rules. The form of a 

neurule is depicted in Fig.1a. Each condition Ci is assigned 
a number sfi, called its significance factor. Moreover, each 
rule itself is assigned a number sf0, called its bias factor. 



 

 

Internally, each neurule is considered as an adaline unit 
(Fig.1b). The inputs Ci (i=1,...,n) of the unit are the 
conditions of the rule. The weights of the unit are the 
significance factors of the neurule and its bias is the bias 
factor of the neurule. Each input takes a value from the 
following set of discrete values: [1 (true), -1 (false), 0 
(unknown)]. The output D, which represents the 
conclusion (decision) of the rule, is calculated via the 
standard formulas (see e.g. [6]): 

  D = f(a) ,    ∑
n

i=
ii Csf + = sf     

1
0a  

                
 
where a is the activation value and f(x) the activation 
function, which is a threshold function. Hence, the output 
can take one of two values (‘-1’, ‘1’) representing failure 
and success of the rule respectively. The significance 
factor of a condition represents the significance (weight) 
of the condition in drawing the conclusion. 

 
Figure 1. (a) Form of a neurule (b) a neurule as an 

adaline unit 
 

The general syntax of a condition Ci and the conclusion 
D is: 
<condition>::= <variable> <l-predicate> <value>  
<conclusion>::= <variable> <r-predicate> <value> 
where <variable> denotes a variable, that is a symbol 
representing a concept in the domain, e.g. ‘sex’, ‘pain’ etc, 
in a medical domain. <l-predicate> denotes a symbolic or 
a numeric predicate. The symbolic predicates are {is, 
isnot}, whereas the numeric predicates are {<, >, =}. <r-
predicate> can only be a symbolic predicate. <value> 
denotes a value. It can be a symbol or a number.  
 
2.2 Constructing a neurule-base 

One way of constructing neurules is from empirical 
data (i.e. training examples /patterns) [11]. What is 
required is the dependency information concerning the 
domain variables and a set of empirical data, which we 
call the source set. They constitute the empirical source 
knowledge. Based on the dependency information, the 

initial neurules are constructed. Then, for each initial 
neurule its corresponding initial training set is extracted 
from the source set (for details see [11]). A training 
example/pattern has the form [v1 v2 … vn d], where d is the 
desired value of a variable related to a partial or final 
conclusion and vi, i= 1, …,n are the values of the variables 
it depends on, called component values. We distinguish 
between success examples and failure examples in a 
training set. Success examples are those having ‘1’ as their 
d value, whereas failure examples those having a ‘-1’. 
Furthermore, the closeness between two examples is 
defined as the number of their common component values. 
So, a least closeness pair (LCP) consists of two success 
examples that have the least closeness between them. 
There may be more than one LCP in a training set. 

Each initial neurule is individually trained via the Least 
Mean Square (LMS) algorithm (see e.g. [6]) using its own 
training set. When the algorithm succeeds, that is values 
for the bias and significant factors are calculated that 
classify all training examples, a neurule is produced. When 
it fails, due to inseparability of the training examples, a 
splitting process is followed. More specifically, the initial 
training set of the neurule is split into two subsets and two 
copies of the initial neurule are trained, each using one of 
the training subsets. Splitting a training set is based on a 
LCP. That is, each subset comprises one of the members 
of a LCP (randomly chosen), the success examples closer 
to it and all the failure examples of the initial training set. 
If training of either neurule copy fails, its subset is further 
split into two other subsets and so on, until there is no 
failure. In this way, more than one neurule are produced, 
having the same conditions with different bias and 
significance factors and the same conclusion, called 
sibling neurules (for details, also see [11]). The conditions 
of the neurules are organized according to the descending 
order of their significance factors. This increases inference 
efficiency [11]. 

For reasons that will become clear in the sequel, we 
introduce here the notion of a splitting tree. For each 
initial training set, its splitting process (if there is one) is 
stored as a tree, which is called its splitting tree. The root 
of the tree corresponds to the initial training set. The 
intermediate nodes and leaves correspond to the 
subsequent subsets into which the initial training set was 
split in. An intermediate node denotes a subset from a 
split, due to training failure, whereas a leaf denotes a 
subset that was successfully trained and produced a 
neurule. The members of the least closeness pair that 
guided each split are attached to the corresponding edges 
of the tree. It can be easily seen that the training (sub)set 
of the root or an intermediate node is a superset of the 
training subsets related to its descendant nodes. 
Furthermore, the nearer one gets to the leaves, the greater 
the mean closeness between the training examples of the 
corresponding training subsets. Tree information is 
assigned to each initial training set that had to split. 



 

 

 
 

Table 1. An example training set 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 D 
-1 -1 1 -1 -1 1 1 1 -1 1 -1 -1 -1 -1 
-1 -1 1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 
-1 -1 1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 1 1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 
-1 -1 1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 
-1 -1 1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 
-1 -1 1 1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 
-1 -1 1 1 -1 1 -1 -1 -1 1 -1 1 -1 -1 
-1 -1 1 1 -1 1 -1 -1 1 -1 -1 1 -1 -1 
-1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 -1 1 
-1 1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 
-1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 
-1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 -1 
-1 1 1 -1 -1 1 -1 1 -1 1 -1 -1 -1 1 
1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 
1 1 1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 
1 1 1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 
1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 

 

 

Table 2. Example conditions and conclusion 

symbol description 
C1 arterial-concentration is slight 
C2 blood-concentration is normal 
C3 scan-concentration is normal 
C4 capillary-concentration is moderate 
C5 venous-concentration is high 
C6 arterial-concentration is moderate 
C7 blood-concentration is high 
C8 capillary-concentration is slight 
C9 venous-concentration is slight 
C10 venous-concentration is normal 
C11 blood-concentration is moderate 
C12 blood-concentration is slight 
C13 venous-concentration is moderate 
D disease is inflammation 
 

Table 3. Success examples 

symbol description 
P1 [-1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1] 
P2 [-1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1] 
P3 [-1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1] 
P4 [-1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1] 
P5 [1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1] 
 
To illustrate how splitting is performed, we use as an 

example the training set presented in Table 1. As it is 

clear, the majority of the examples in the training set are 
failure examples, whereas success examples, which are 
shown in bold, are a minority. 

The training set has been extracted from empirical data 
concerning five input (domain) variables (arterial-
concentration, blood-concentration, scan-concentration, 
capillary-concentration, venous-concentration) and a 
conclusion variable (disease) that depends on the five 
domain variables. Given that each input variable can take 
more than one discrete value, each initial neurule has 
thirteen conditions (C1-C13), presented in Table 2. D 
corresponds to the conclusion.  

For presentation reasons, names (P1-P5) are assigned to 
the five success examples/patterns (of Table 1), as 
presented in Table 3. Also, let F be the set of failure 
examples in the training set. 

 

 
Figure 2. The splitting tree for the training set of 

Table 1 
 



 

 

From the above training set, according to the process 
presented in [11], four neurules are finally produced (two 
of them are depicted in Table 4). Figure 2 illustrates the 
corresponding splitting tree, which represents the splits 
that take place during the process. 

Due to inseparability, the initial training set {P1, P2, 
P3, P4, P5} ∪ F is split in two subsets: {P1, P3, P4} ∪ F 
and {P2, P5} ∪ F with as least closeness pair (P1, P5). 
Subset {P1, P3, P4} ∪ F is subsequently split into subsets 
{P3} ∪ F and {P1, P4} ∪ F. Subset {P3} ∪ F produces a 
neurule (NR1, Table 4). Subset {P1, P4} ∪ F produces 
another neurule (NR2, Table 4). Similarly, from subset 
{P2, P5} ∪ F two other neurules are produced 
(corresponding to its two leaves).  
 

Table 4. Two of the neurules produced from the 
example training set 

NR1 
(-13.5) if venous-conc is slight (12.4), 
                blood-conc is moderate (11.6), 
                art-conc is moderate (8.8), 
                scan-conc is normal (8.4), 
                cap-conc is moderate (8.4), 
                blood-conc is slight (8.3), 
                venous-conc is moderate (8.2), 
                venous-conc is normal (8.0), 
                arterial-conc is slight (-5.7), 
                cap-conc is slight (4.5), 
                blood-conc is normal (4.4), 
                blood-conc is high (1.6), 
                venous-conc is high (1.2) 
            then disease is inflammation 

NR2 
(-14.6) if blood-conc is normal (14.0), 
               venous-conc is slight (13.5), 
               arterial-conc is moderate (10.6), 
               cap-conc is slight (10.4), 
               scan-conc is normal (10.1), 
               venous-conc is normal (9.9), 
               blood-conc is high (9.9), 
               venous-conc is moderate (6.5), 
               blood-conc is moderate (6.3), 
               blood-conc is slight (3.2), 
               venous-conc is high (-1.0), 
               cap-conc is moderate (-0.5), 
               arterial-conc is slight (-0.4) 
            then disease is inflammation 

 
3. Insertion of a new example 

 
Often, new empirical data may become available over 

time. This entails that the neurule-base should be updated. 
Availability of new data in the source set means insertion 
of a new example (either success or failure) into all the 

initial training sets that are affected. Given the modularity 
of a neurule-base, when a new example is available, it 
does not affect the whole base, but one or more sets of 
sibling rules. So, the basic problem is how to update a set 
of sibling neurules, due to availability of an extra training 
example/pattern, which should be taken into account 
alongside their initial training set. 

The updating process, in order to be efficient, should 
encompass two features: (a) the least possible subset of 
corresponding sibling neurules should undergo (re)training 
and (b) the number of corresponding sibling neurules 
should remain as small as possible. The first feature 
guarantees that the computational cost of the update will 
be as low as possible. The second one assures that the 
efficiency of the inferences will not significantly decrease. 

At the insertion of a new example in an initial training 
set, two cases can be distinguished: (a) There is no 
splitting tree associated with the training set, (b) There is a 
splitting tree. Case (a) is a simple one. The fact that there 
is no splitting tree means that the initial training set was 
not split, hence only one neurule was produced. To handle 
this case, the existing neurule is removed from the 
neurule-base and (re)training with the updated training set 
is performed. If training is successful, one new (updated) 
neurule is produced. If training fails, two new neurules are 
produced. Case (a) is handled in the same way for both, 
the insertion of a success and the insertion of a failure 
example. 

Case (b) is a difficult one. The existence of a splitting 
tree means that there was at least one splitting of the initial 
training set and two or more sibling neurules were 
produced. There can be various approaches to handle this 
case, which are presented in the next subsections.  

 
3.1. Insertion of a success example 

At inserting a success example/pattern P in an initial 
training set, there can be three approaches to handle case 
(b). 

(i) Corresponding sibling neurules are removed from 
the neurule-base, the new example is inserted into the 
initial training set and retraining is performed to produce 
the new (sibling) neurules. This approach is actually based 
on retraining the whole set of the sibling neurules, 
therefore is inefficient, especially when more than two 
neurules are produced from the initial training set. The 
reason is that it discards the information stored in the 
splitting tree, thus performing extra training and splitting. 
However, it probably produces the least number of sibling 
neurules. We call this approach Sb1. 

(ii) Leave all corresponding sibling neurules intact and 
insert into the neurule-base an extra (sibling) neurule 
produced from a training set containing the new example 
and the failure examples of the initial training set. This 
method is computationally efficient, but definitely 
increases the number of neurules in the neurule-base, 
negatively affecting the inference process. Again, this 



 

 

method does not take into account the information stored  
in the splitting tree. We call this approach Sb2. 

(iii) The third approach exploits the information stored 
in the splitting tree. It focuses on the training subset 
containing the success examples that are closer to P. To 
this end, the splitting tree is traversed starting from the 
root and ending at a leaf or an intermediate node. 
Traversing is based on the closeness between the new 
success example P and the least closeness pairs attached to 
the edges of the splitting tree. We call this approach Sb3. 
More formally, the corresponding algorithm is as follows: 
Starting from the root, traverse the splitting tree and do 
1. If the current node is not a leaf, check whether the 
training (sub)set corresponding to the node contains an 
example P' whose closeness to P is less than the least 
closeness of the (sub)set. If there is no such example, 
insert P into the training (sub)set of the node and execute 
this step recursively for the child of the node on the branch 
denoted by the member of the least closeness pair which is 
closer to P. If there is such an example P', do 
 1.1. Stop traversing the splitting tree.  
 1.2. Remove from the neurule-base all (sibling) 

neurules corresponding to the leaves descending 
from this node. 

 1.3. Insert P into the corresponding training (sub)set 
and split it in two subsets with as least closeness 
pair (P, P').  

 1.4. Perform (re)training based on the two training 
subsets, produce the corresponding neurules 
(reusing parts of the initial splitting tree to avoid 
unnecessary training or splitting), insert the 
produced neurules into the neurule-base and 
update the splitting tree.  

2. If the current node is a leaf, remove the corresponding 
neurule, insert P into its training set and perform 
(re)training.  
 2.1 If training fails, split the training set, produce the 

two neurules, insert them into the neurule-base and 
update the splitting tree. 

 2.2 If training is successful, insert the neurule 
produced from the leaf's new training set into the 
neurule-base and update the splitting tree. 

Approach Sb3 results in changes to the least possible 
subset of the corresponding sibling neurules set and 
therefore requires less (re)training effort than approach 
Sb1. Furthermore, Sb3 produces less sibling neurules than 
Sb2. Sb2 inserts a neurule into the neurule-base when a 
new success example is inserted into the initial training 
set. On the contrary, if the insertion of a success example 
is handled according to approach Sb3, the number of the 
produced neurules may not increase. More specifically, if 
traversing reaches a leaf and training of the subsequent 
subset is successful, the number of produced neurules 
remains the same (steps 2.1-2.2). 

 
3.2 Insertion of a failure example 

The insertion of a failure example into an initial 
training set affects all the sibling neurules produced from 
this set. Therefore, compared to the insertion of a success 
example, it requires more (re)training effort. At inserting a 
failure example/pattren in an initial training set, there can 
be two approaches to handle case (b). 

(i) Corresponding sibling neurules are removed from 
the neurule-base, the new example is inserted into the 
initial training set and retraining is performed to produce 
the new neurules. Again, this approach is actually based 
on retraining the whole set of the sibling neurules, 
therefore is inefficient. It discards the information stored 
in the splitting tree, thus performing extra training and 
splitting. We call this approach Fb1. This approach is 
similar to Sb1. 

(ii) The second approach exploits the information 
contained in the splitting tree. It removes corresponding 
sibling neurules from the neurule-base and inserts the 
example into the training subsets corresponding to the 
leaves of the splitting tree. It performs training of the 
subsets and the produced neurules are inserted into the 
neurule-base. We call this approach Fb2. It is obvious that 
approach Fb2 usually requires more training effort than its 
corresponding approach Sb3, handling the insertion of 
success examples. However, it requires less training effort 
than approach Fb1. 

 
4. Examples 

 
Consider the initial training set presented in section 2.2. 

Suppose that the success example P6 = [-1, 1, 1, 1, -1, 1, -
1, -1, 1, -1, -1, -1, -1, 1] is to be inserted into the initial 
training set. Given that more than one sibling neurule were 
produced from the initial training set, it is a (b) case. 

Following approach Sb3, traversing ends at the leaf 
corresponding to subset {P3} ∪ F (see Figs 2 and 3). 
Training based on the new training subset {P3, P6} ∪ F is 
successful and the process stops. The splitting tree takes 
the form in Fig. 4. So, the total number of neurules in the 
neurule-base after the insertion of P6 remains four 
(corresponding to the leaves of the splitting tree in Fig. 4). 

 

 
Figure 3. Traversal of the splitting tree for the 

insertion of example P6 
 



 

 

Notice that, approach Sb3 finally ends at subset {P3} ∪ 
F, which includes the success example closest to P6. So, 
only one of the corresponding sibling neurules requires 
(re)training. The rest of them remain intact. Approach Sb1 
produces the same number of neurules, requiring though 
unnecessary training and splitting. Approach Sb2 inserts 
the neurule produced from subset {P6} ∪ F into the 
neurule-base. So, Sb2 produces more neurules than Sb3.  

 

 
Figure 4. The splitting tree after insertion of example 

P6 
 

 
Figure 5. Traversal of the splitting tree for the 

insertion of example P7 
 

 
Figure 6. The splitting tree after insertion of example 

P7 
 
Suppose that (after the insertion of P6) the success 

example P7 = [-1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1] is 
to be inserted into the training set {P1, P2, P3, P4, P5, P6} 
∪ F. Following approach Sb3, traversing ends at the leaf 
related to subset {P1, P4} ∪ F (see Figs 4 and 5). Training 

based on the new training subset {P1, P4, P7} ∪ F is 
successful and the process stops. The splitting tree takes 
the form shown in Fig. 6. The total number of neurules in 
the neurule-base, after inserting P7, remains again four 
(corresponding to the leaves of the splitting tree in Fig. 6). 
Once again only one of the sibling neurules requires 
(re)training. The rest remain intact. 

Approach Sb1 produces the same neurules, requiring 
though unnecessary training and splitting. Approach Sb2 
inserts the neurule produced from subset {P7} ∪ F into the 
neurule-base. So, approach Sb2, in order to update the 
neurule-base due to insertion of both P6 and P7, increases 
the number of neurules from four to six, whereas Sb3 
results in no change to that number; they remain four. 
 
5. Experimental Results 

 
In this section we present experimental results 

comparing the different approaches for handling case (b) 
of an example insertion. For this purpose, we use training 
sets produced from datasets taken from the UCI 
Repository of Machine Learning and Domain Theories [2]. 
More specifically, we used the lenses dataset containing 
24 examples/patterns of 9 component values and the tic-
tac-toe dataset containing 958 examples/patterns of 27 
component values. Additionally, we used three datasets of 
ours produced from a medical domain [13]: the 
inflammation dataset, containing 96 examples/patterns of 9 
component values, the arthritis dataset, containing 144 
examples/patterns of also 9 component values, and the 
primary_malignant dataset, containing 120 
examples/patterns of 10 component values.  

 
Table 3. Experimental results 

Dataset Comp
Set 

Incomp 
Set Sb1 Sb2 Sb3 

Lenses  4 4 (3) 4 7 4 

Tic-tac-toe 30 28 (4) 30 32 30 

Inflammation 2 2 (1) 2 3 2 

Arthritis 3 3 (1) 3 4 3 

Primary- 
malignant 

2 2 (1) 2 3 2 

 
Comparison of the approaches is based on the number 

of the produced neurules. Initial training sets, called 
complete sets, were formed from the datasets and 
corresponding neurule-bases were produced from them. 
Afterwards, a few success examples were removed from 
the complete sets. The resulting training sets are called 
incomplete sets. Then, neurule-bases corresponding to the 
incomplete sets were produced. Afterwards, the removed 
examples were inserted one by one into the incomplete 
sets and the neurule-bases were updated using the 



 

 

approaches related to case (b). So, at the end, the 
incomplete sets became the same as the complete sets. 

Table 3 presents the experimental results. For each 
dataset, the number of neurules of the neurule-base 
produced from the complete and the incomplete sets are 
presented  (‘Complete Set’ and ‘Incomplete Set’ columns). 
Also, the final number of neurules, after the insertion of 
the removed examples, using the approaches Sb1, Sb2 and 
Sb3, are presented. The number of removed examples is 
shown within parentheses in the ‘Incomplete Set’ column. 
As it is clear, the use of approach Sb3 results in the same 
number of neurules as if recreation of the neurule-base has 
been made (approach Sb1). On the contrary, approach Sb2 
results in increasing the number of the neurules, directly 
depending on the number of inserted examples. 

 
6. Conclusions 

 
In this paper, we present methods for efficiently 

updating a hybrid rule base (target knowledge) due to 
changes to its empirical source knowledge. The hybrid 
rule base consists of neurules, a type of hybrid rules 
integrating symbolic rules with neurocomputing. Its 
empirical source knowledge consists of training 
examples/patterns. Updates refer to insertion of new 
training examples and are handled quite efficiently. That 
is, only the necessary part of the target knowledge has to 
be retrained and the number of the neurules remains as 
small as possible. This is achieved by exploiting the notion 
of closeness, used to handle inseparability in the 
construction of the target knowledge, and the introduction 
of a structure called the splitting tree, which stores 
information regarding the construction process of the 
target knowledge.  

In this paper, we assume that the inserted example is 
not conflicting with an existing one. If this is not the case, 
the existing example should be removed and the new one 
should be inserted instead. So, the problem of removing an 
example/pattern should be tackled. This is a more difficult 
problem and a challenge for further research. Furthermore, 
in this paper, we are dealing with consecutive insertion of 
examples. Simultaneous insertion of more than one 
example seems to be another interesting problem for 
further research. 
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