
Published in the Proceedings of the 14th IEEE International Conference on AI Tools (ICTAI-02), 4-6 Nov. 2002,
Washington, DC, USA, 9-15.

Copyright 2002, IEEE Computer Society (http://www.ieee.org). All rights reserved.

Updating a Hybrid Rule Base with New Empirical Source Knowledge

Jim Prentzas, Ioannis Hatzilygeroudis, Athanasios Tsakalidis
University of Patras, School of Engineering

Dept of Computer Engin. & Informatics, 26500 Patras, Hellas (Greece)
&

Computer Technology Institute, P.O. Box 1122, 26110 Patras, Hellas (Greece)
{prentzas, ihatz}@ceid.upatras.gr, {ihatz, tsak}@cti.gr

Abstract

Neurules are a kind of hybrid rules that combine a
symbolic (production rules) and a connectionist (adaline
unit) representation. Each neurule is represented as an
adaline unit. One way that the neurules can be produced is
from training examples (empirical source knowledge).
However, in certain application fields not all of the
training examples are available a priori. A number of
them become available over time. In these cases, updating
the corresponding neurules is necessary. In this paper,
methods for updating a hybrid rule base, consisting of
neurules, to reflect the availability of new training
examples are presented. The methods are efficient, since
they require the least possible retraining effort and the
number of the produced neurules is kept as small as
possible.

1. Introduction

There has been extensive research activity at combining
(or integrating) the symbolic and the connectionist
approaches for knowledge representation in expert systems
[3, 15, 16, 19]. Especially, there are a number of efforts
combining symbolic rules and neural networks that map
rules into neural networks [4, 9, 18]. In addition,
connectionist expert systems [6, 7, 17] are a type of
integrated systems that represent relationships between
concepts, considered as nodes of a neural network. The
above approaches give pre-eminence to connectionism and
use a neural network as a knowledge base. The strong
point of those approaches is that knowledge elicitation
from experts is reduced to a minimum. A weak point is
that their knowledge base lacks the naturalness and
modularity of symbolic rules; it is incomprehensible.
Therefore, often explanations are provided in the form of
if-then rules by rule extraction methods [1].

Neurules [10] integrate symbolic rules and
connectionism, but in a different way. They give pre-
eminence to the symbolic component. Neurocomputing is

used within the symbolic framework to improve the
performance of symbolic rules. The constructed
knowledge base retains the modularity of production rules,
since it consists of autonomous units (neurules), and also
retains their naturalness in a great degree, since neurules
look much like symbolic rules. Also, the inference
mechanism is a tightly integrated process, which results in
more efficient inferences than those of symbolic rules and
explanations in the form of if-then rules can be produced
[12].

One way that the neurules, called the target knowledge,
can be produced is from training examples [11], called the
empirical source knowledge. However, in certain
application fields (e.g. user modeling/profiling, intelligent
agents, intelligent user interfaces and robotics) not all of
the training examples are available a priori. A number of
them become available over time. This happens either
because the environment changes with time or because the
rate at which examples become available may be too slow
[8]. Therefore, methods should be developed for the
various types of classifiers dealing with this problem [5].
These methods may or may not require re-examination of
all or part of the empirical source knowledge [14]. The
methods must be effective as far as the retraining effort
and the size of the target knowledge are concerned.

In this paper, we present methods for efficient
maintenance of the target knowledge, due to changes to
the empirical source knowledge of a neurule-based expert
system. Section 2 presents neurules. The methods are
introduced in Section 3. Section 4 gives some examples
and Section 5 presents experimental results. Finally,
Section 6 concludes.

2. Neurules

2.1 Syntax and semantics

Neurules are a kind of hybrid rules. The form of a

neurule is depicted in Fig.1a. Each condition Ci is assigned
a number sfi, called its significance factor. Moreover, each
rule itself is assigned a number sf0, called its bias factor.

Internally, each neurule is considered as an adaline unit
(Fig.1b). The inputs Ci (i=1,...,n) of the unit are the
conditions of the rule. The weights of the unit are the
significance factors of the neurule and its bias is the bias
factor of the neurule. Each input takes a value from the
following set of discrete values: [1 (true), -1 (false), 0
(unknown)]. The output D, which represents the
conclusion (decision) of the rule, is calculated via the
standard formulas (see e.g. [6]):

 D = f(a) , ∑
n

i=
ii Csf + = sf

1
0a

where a is the activation value and f(x) the activation
function, which is a threshold function. Hence, the output
can take one of two values (‘-1’, ‘1’) representing failure
and success of the rule respectively. The significance
factor of a condition represents the significance (weight)
of the condition in drawing the conclusion.

Figure 1. (a) Form of a neurule (b) a neurule as an

adaline unit

The general syntax of a condition Ci and the conclusion
D is:
<condition>::= <variable> <l-predicate> <value>
<conclusion>::= <variable> <r-predicate> <value>
where <variable> denotes a variable, that is a symbol
representing a concept in the domain, e.g. ‘sex’, ‘pain’ etc,
in a medical domain. <l-predicate> denotes a symbolic or
a numeric predicate. The symbolic predicates are {is,
isnot}, whereas the numeric predicates are {<, >, =}. <r-
predicate> can only be a symbolic predicate. <value>
denotes a value. It can be a symbol or a number.

2.2 Constructing a neurule-base

One way of constructing neurules is from empirical
data (i.e. training examples /patterns) [11]. What is
required is the dependency information concerning the
domain variables and a set of empirical data, which we
call the source set. They constitute the empirical source
knowledge. Based on the dependency information, the

initial neurules are constructed. Then, for each initial
neurule its corresponding initial training set is extracted
from the source set (for details see [11]). A training
example/pattern has the form [v1 v2 … vn d], where d is the
desired value of a variable related to a partial or final
conclusion and vi, i= 1, …,n are the values of the variables
it depends on, called component values. We distinguish
between success examples and failure examples in a
training set. Success examples are those having ‘1’ as their
d value, whereas failure examples those having a ‘-1’.
Furthermore, the closeness between two examples is
defined as the number of their common component values.
So, a least closeness pair (LCP) consists of two success
examples that have the least closeness between them.
There may be more than one LCP in a training set.

Each initial neurule is individually trained via the Least
Mean Square (LMS) algorithm (see e.g. [6]) using its own
training set. When the algorithm succeeds, that is values
for the bias and significant factors are calculated that
classify all training examples, a neurule is produced. When
it fails, due to inseparability of the training examples, a
splitting process is followed. More specifically, the initial
training set of the neurule is split into two subsets and two
copies of the initial neurule are trained, each using one of
the training subsets. Splitting a training set is based on a
LCP. That is, each subset comprises one of the members
of a LCP (randomly chosen), the success examples closer
to it and all the failure examples of the initial training set.
If training of either neurule copy fails, its subset is further
split into two other subsets and so on, until there is no
failure. In this way, more than one neurule are produced,
having the same conditions with different bias and
significance factors and the same conclusion, called
sibling neurules (for details, also see [11]). The conditions
of the neurules are organized according to the descending
order of their significance factors. This increases inference
efficiency [11].

For reasons that will become clear in the sequel, we
introduce here the notion of a splitting tree. For each
initial training set, its splitting process (if there is one) is
stored as a tree, which is called its splitting tree. The root
of the tree corresponds to the initial training set. The
intermediate nodes and leaves correspond to the
subsequent subsets into which the initial training set was
split in. An intermediate node denotes a subset from a
split, due to training failure, whereas a leaf denotes a
subset that was successfully trained and produced a
neurule. The members of the least closeness pair that
guided each split are attached to the corresponding edges
of the tree. It can be easily seen that the training (sub)set
of the root or an intermediate node is a superset of the
training subsets related to its descendant nodes.
Furthermore, the nearer one gets to the leaves, the greater
the mean closeness between the training examples of the
corresponding training subsets. Tree information is
assigned to each initial training set that had to split.

Table 1. An example training set

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 D
-1 -1 1 -1 -1 1 1 1 -1 1 -1 -1 -1 -1
-1 -1 1 -1 -1 1 1 1 1 -1 -1 -1 -1 1
-1 -1 1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 1 1 -1 1 -1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1
-1 -1 1 1 -1 1 -1 -1 -1 -1 -1 1 1 1
-1 -1 1 1 -1 1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 1 1 -1 1 -1 -1 -1 1 -1 1 -1 -1
-1 -1 1 1 -1 1 -1 -1 1 -1 -1 1 -1 -1
-1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 -1 1
-1 1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1
-1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1
-1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 -1
-1 1 1 -1 -1 1 -1 1 -1 1 -1 -1 -1 1
1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1
1 1 1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1
1 1 1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1
1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1

Table 2. Example conditions and conclusion

symbol description
C1 arterial-concentration is slight
C2 blood-concentration is normal
C3 scan-concentration is normal
C4 capillary-concentration is moderate
C5 venous-concentration is high
C6 arterial-concentration is moderate
C7 blood-concentration is high
C8 capillary-concentration is slight
C9 venous-concentration is slight
C10 venous-concentration is normal
C11 blood-concentration is moderate
C12 blood-concentration is slight
C13 venous-concentration is moderate
D disease is inflammation

Table 3. Success examples

symbol description
P1 [-1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1]
P2 [-1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1]
P3 [-1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1]
P4 [-1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1]
P5 [1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1]

To illustrate how splitting is performed, we use as an

example the training set presented in Table 1. As it is

clear, the majority of the examples in the training set are
failure examples, whereas success examples, which are
shown in bold, are a minority.

The training set has been extracted from empirical data
concerning five input (domain) variables (arterial-
concentration, blood-concentration, scan-concentration,
capillary-concentration, venous-concentration) and a
conclusion variable (disease) that depends on the five
domain variables. Given that each input variable can take
more than one discrete value, each initial neurule has
thirteen conditions (C1-C13), presented in Table 2. D
corresponds to the conclusion.

For presentation reasons, names (P1-P5) are assigned to
the five success examples/patterns (of Table 1), as
presented in Table 3. Also, let F be the set of failure
examples in the training set.

Figure 2. The splitting tree for the training set of

Table 1

From the above training set, according to the process
presented in [11], four neurules are finally produced (two
of them are depicted in Table 4). Figure 2 illustrates the
corresponding splitting tree, which represents the splits
that take place during the process.

Due to inseparability, the initial training set {P1, P2,
P3, P4, P5} ∪ F is split in two subsets: {P1, P3, P4} ∪ F
and {P2, P5} ∪ F with as least closeness pair (P1, P5).
Subset {P1, P3, P4} ∪ F is subsequently split into subsets
{P3} ∪ F and {P1, P4} ∪ F. Subset {P3} ∪ F produces a
neurule (NR1, Table 4). Subset {P1, P4} ∪ F produces
another neurule (NR2, Table 4). Similarly, from subset
{P2, P5} ∪ F two other neurules are produced
(corresponding to its two leaves).

Table 4. Two of the neurules produced from the
example training set

NR1
(-13.5) if venous-conc is slight (12.4),
 blood-conc is moderate (11.6),
 art-conc is moderate (8.8),
 scan-conc is normal (8.4),
 cap-conc is moderate (8.4),
 blood-conc is slight (8.3),
 venous-conc is moderate (8.2),
 venous-conc is normal (8.0),
 arterial-conc is slight (-5.7),
 cap-conc is slight (4.5),
 blood-conc is normal (4.4),
 blood-conc is high (1.6),
 venous-conc is high (1.2)
 then disease is inflammation

NR2
(-14.6) if blood-conc is normal (14.0),
 venous-conc is slight (13.5),
 arterial-conc is moderate (10.6),
 cap-conc is slight (10.4),
 scan-conc is normal (10.1),
 venous-conc is normal (9.9),
 blood-conc is high (9.9),
 venous-conc is moderate (6.5),
 blood-conc is moderate (6.3),
 blood-conc is slight (3.2),
 venous-conc is high (-1.0),
 cap-conc is moderate (-0.5),
 arterial-conc is slight (-0.4)
 then disease is inflammation

3. Insertion of a new example

Often, new empirical data may become available over

time. This entails that the neurule-base should be updated.
Availability of new data in the source set means insertion
of a new example (either success or failure) into all the

initial training sets that are affected. Given the modularity
of a neurule-base, when a new example is available, it
does not affect the whole base, but one or more sets of
sibling rules. So, the basic problem is how to update a set
of sibling neurules, due to availability of an extra training
example/pattern, which should be taken into account
alongside their initial training set.

The updating process, in order to be efficient, should
encompass two features: (a) the least possible subset of
corresponding sibling neurules should undergo (re)training
and (b) the number of corresponding sibling neurules
should remain as small as possible. The first feature
guarantees that the computational cost of the update will
be as low as possible. The second one assures that the
efficiency of the inferences will not significantly decrease.

At the insertion of a new example in an initial training
set, two cases can be distinguished: (a) There is no
splitting tree associated with the training set, (b) There is a
splitting tree. Case (a) is a simple one. The fact that there
is no splitting tree means that the initial training set was
not split, hence only one neurule was produced. To handle
this case, the existing neurule is removed from the
neurule-base and (re)training with the updated training set
is performed. If training is successful, one new (updated)
neurule is produced. If training fails, two new neurules are
produced. Case (a) is handled in the same way for both,
the insertion of a success and the insertion of a failure
example.

Case (b) is a difficult one. The existence of a splitting
tree means that there was at least one splitting of the initial
training set and two or more sibling neurules were
produced. There can be various approaches to handle this
case, which are presented in the next subsections.

3.1. Insertion of a success example

At inserting a success example/pattern P in an initial
training set, there can be three approaches to handle case
(b).

(i) Corresponding sibling neurules are removed from
the neurule-base, the new example is inserted into the
initial training set and retraining is performed to produce
the new (sibling) neurules. This approach is actually based
on retraining the whole set of the sibling neurules,
therefore is inefficient, especially when more than two
neurules are produced from the initial training set. The
reason is that it discards the information stored in the
splitting tree, thus performing extra training and splitting.
However, it probably produces the least number of sibling
neurules. We call this approach Sb1.

(ii) Leave all corresponding sibling neurules intact and
insert into the neurule-base an extra (sibling) neurule
produced from a training set containing the new example
and the failure examples of the initial training set. This
method is computationally efficient, but definitely
increases the number of neurules in the neurule-base,
negatively affecting the inference process. Again, this

method does not take into account the information stored
in the splitting tree. We call this approach Sb2.

(iii) The third approach exploits the information stored
in the splitting tree. It focuses on the training subset
containing the success examples that are closer to P. To
this end, the splitting tree is traversed starting from the
root and ending at a leaf or an intermediate node.
Traversing is based on the closeness between the new
success example P and the least closeness pairs attached to
the edges of the splitting tree. We call this approach Sb3.
More formally, the corresponding algorithm is as follows:
Starting from the root, traverse the splitting tree and do
1. If the current node is not a leaf, check whether the
training (sub)set corresponding to the node contains an
example P' whose closeness to P is less than the least
closeness of the (sub)set. If there is no such example,
insert P into the training (sub)set of the node and execute
this step recursively for the child of the node on the branch
denoted by the member of the least closeness pair which is
closer to P. If there is such an example P', do
 1.1. Stop traversing the splitting tree.
 1.2. Remove from the neurule-base all (sibling)

neurules corresponding to the leaves descending
from this node.

 1.3. Insert P into the corresponding training (sub)set
and split it in two subsets with as least closeness
pair (P, P').

 1.4. Perform (re)training based on the two training
subsets, produce the corresponding neurules
(reusing parts of the initial splitting tree to avoid
unnecessary training or splitting), insert the
produced neurules into the neurule-base and
update the splitting tree.

2. If the current node is a leaf, remove the corresponding
neurule, insert P into its training set and perform
(re)training.
 2.1 If training fails, split the training set, produce the

two neurules, insert them into the neurule-base and
update the splitting tree.

 2.2 If training is successful, insert the neurule
produced from the leaf's new training set into the
neurule-base and update the splitting tree.

Approach Sb3 results in changes to the least possible
subset of the corresponding sibling neurules set and
therefore requires less (re)training effort than approach
Sb1. Furthermore, Sb3 produces less sibling neurules than
Sb2. Sb2 inserts a neurule into the neurule-base when a
new success example is inserted into the initial training
set. On the contrary, if the insertion of a success example
is handled according to approach Sb3, the number of the
produced neurules may not increase. More specifically, if
traversing reaches a leaf and training of the subsequent
subset is successful, the number of produced neurules
remains the same (steps 2.1-2.2).

3.2 Insertion of a failure example

The insertion of a failure example into an initial
training set affects all the sibling neurules produced from
this set. Therefore, compared to the insertion of a success
example, it requires more (re)training effort. At inserting a
failure example/pattren in an initial training set, there can
be two approaches to handle case (b).

(i) Corresponding sibling neurules are removed from
the neurule-base, the new example is inserted into the
initial training set and retraining is performed to produce
the new neurules. Again, this approach is actually based
on retraining the whole set of the sibling neurules,
therefore is inefficient. It discards the information stored
in the splitting tree, thus performing extra training and
splitting. We call this approach Fb1. This approach is
similar to Sb1.

(ii) The second approach exploits the information
contained in the splitting tree. It removes corresponding
sibling neurules from the neurule-base and inserts the
example into the training subsets corresponding to the
leaves of the splitting tree. It performs training of the
subsets and the produced neurules are inserted into the
neurule-base. We call this approach Fb2. It is obvious that
approach Fb2 usually requires more training effort than its
corresponding approach Sb3, handling the insertion of
success examples. However, it requires less training effort
than approach Fb1.

4. Examples

Consider the initial training set presented in section 2.2.

Suppose that the success example P6 = [-1, 1, 1, 1, -1, 1, -
1, -1, 1, -1, -1, -1, -1, 1] is to be inserted into the initial
training set. Given that more than one sibling neurule were
produced from the initial training set, it is a (b) case.

Following approach Sb3, traversing ends at the leaf
corresponding to subset {P3} ∪ F (see Figs 2 and 3).
Training based on the new training subset {P3, P6} ∪ F is
successful and the process stops. The splitting tree takes
the form in Fig. 4. So, the total number of neurules in the
neurule-base after the insertion of P6 remains four
(corresponding to the leaves of the splitting tree in Fig. 4).

Figure 3. Traversal of the splitting tree for the

insertion of example P6

Notice that, approach Sb3 finally ends at subset {P3} ∪
F, which includes the success example closest to P6. So,
only one of the corresponding sibling neurules requires
(re)training. The rest of them remain intact. Approach Sb1
produces the same number of neurules, requiring though
unnecessary training and splitting. Approach Sb2 inserts
the neurule produced from subset {P6} ∪ F into the
neurule-base. So, Sb2 produces more neurules than Sb3.

Figure 4. The splitting tree after insertion of example

P6

Figure 5. Traversal of the splitting tree for the

insertion of example P7

Figure 6. The splitting tree after insertion of example

P7

Suppose that (after the insertion of P6) the success

example P7 = [-1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1] is
to be inserted into the training set {P1, P2, P3, P4, P5, P6}
∪ F. Following approach Sb3, traversing ends at the leaf
related to subset {P1, P4} ∪ F (see Figs 4 and 5). Training

based on the new training subset {P1, P4, P7} ∪ F is
successful and the process stops. The splitting tree takes
the form shown in Fig. 6. The total number of neurules in
the neurule-base, after inserting P7, remains again four
(corresponding to the leaves of the splitting tree in Fig. 6).
Once again only one of the sibling neurules requires
(re)training. The rest remain intact.

Approach Sb1 produces the same neurules, requiring
though unnecessary training and splitting. Approach Sb2
inserts the neurule produced from subset {P7} ∪ F into the
neurule-base. So, approach Sb2, in order to update the
neurule-base due to insertion of both P6 and P7, increases
the number of neurules from four to six, whereas Sb3
results in no change to that number; they remain four.

5. Experimental Results

In this section we present experimental results

comparing the different approaches for handling case (b)
of an example insertion. For this purpose, we use training
sets produced from datasets taken from the UCI
Repository of Machine Learning and Domain Theories [2].
More specifically, we used the lenses dataset containing
24 examples/patterns of 9 component values and the tic-
tac-toe dataset containing 958 examples/patterns of 27
component values. Additionally, we used three datasets of
ours produced from a medical domain [13]: the
inflammation dataset, containing 96 examples/patterns of 9
component values, the arthritis dataset, containing 144
examples/patterns of also 9 component values, and the
primary_malignant dataset, containing 120
examples/patterns of 10 component values.

Table 3. Experimental results

Dataset Comp
Set

Incomp
Set Sb1 Sb2 Sb3

Lenses 4 4 (3) 4 7 4

Tic-tac-toe 30 28 (4) 30 32 30

Inflammation 2 2 (1) 2 3 2

Arthritis 3 3 (1) 3 4 3

Primary-
malignant

2 2 (1) 2 3 2

Comparison of the approaches is based on the number

of the produced neurules. Initial training sets, called
complete sets, were formed from the datasets and
corresponding neurule-bases were produced from them.
Afterwards, a few success examples were removed from
the complete sets. The resulting training sets are called
incomplete sets. Then, neurule-bases corresponding to the
incomplete sets were produced. Afterwards, the removed
examples were inserted one by one into the incomplete
sets and the neurule-bases were updated using the

approaches related to case (b). So, at the end, the
incomplete sets became the same as the complete sets.

Table 3 presents the experimental results. For each
dataset, the number of neurules of the neurule-base
produced from the complete and the incomplete sets are
presented (‘Complete Set’ and ‘Incomplete Set’ columns).
Also, the final number of neurules, after the insertion of
the removed examples, using the approaches Sb1, Sb2 and
Sb3, are presented. The number of removed examples is
shown within parentheses in the ‘Incomplete Set’ column.
As it is clear, the use of approach Sb3 results in the same
number of neurules as if recreation of the neurule-base has
been made (approach Sb1). On the contrary, approach Sb2
results in increasing the number of the neurules, directly
depending on the number of inserted examples.

6. Conclusions

In this paper, we present methods for efficiently

updating a hybrid rule base (target knowledge) due to
changes to its empirical source knowledge. The hybrid
rule base consists of neurules, a type of hybrid rules
integrating symbolic rules with neurocomputing. Its
empirical source knowledge consists of training
examples/patterns. Updates refer to insertion of new
training examples and are handled quite efficiently. That
is, only the necessary part of the target knowledge has to
be retrained and the number of the neurules remains as
small as possible. This is achieved by exploiting the notion
of closeness, used to handle inseparability in the
construction of the target knowledge, and the introduction
of a structure called the splitting tree, which stores
information regarding the construction process of the
target knowledge.

In this paper, we assume that the inserted example is
not conflicting with an existing one. If this is not the case,
the existing example should be removed and the new one
should be inserted instead. So, the problem of removing an
example/pattern should be tackled. This is a more difficult
problem and a challenge for further research. Furthermore,
in this paper, we are dealing with consecutive insertion of
examples. Simultaneous insertion of more than one
example seems to be another interesting problem for
further research.

References

[1] Andrews R., Diederich, J. and Tickle A., “A survey and
critique for extracting rules from trained ANN”, Knowledge-
Based Systems 8, 1995, 373-389.

[2] Blake C.L. and Merz C.J., UCI Repository of machine
learning databases [http://www.ics.uci.edu/~mlearn/
MLRepository.html], Department of Information and Computer
Science, University of California, Irvine, CA, 1998.

[3] d’Avila Garcez A. S., Broda K. B. and Gabbay D. M.,
Neural-Symbolic Learning Systems, Springer-Verlag, Heidelberg,
2002.

[4] Fu, L-M, Fu, L-C, “Mapping rule-based systems into neural
architecture”, Knowledge-Based Systems 3, 1990, 48-56.

[5] Fu, L-M, “Incremental Knowledge Acquisition in Supervised
Learning Networks”, IEEE Transactions on Systems, Man and
Cybernetics-Part A: Systems and Humans 26, 1996, 801-809.

[6] Gallant, S. I., Neural Network Learning and Expert Systems,
MIT Press, 1993.

[7] Ghalwash, A. Z., “A Recency Inference Engine for
Connectionist Knowledge Bases”, Applied Intelligence 9, 1998,
201-215.

[8] Giraud-Carrier, C., “A Note on the Utility of Incremental
Learning”, AI Communications 13, 2000, 215-224.

[9] Hall L. O., K. Sanou and S. Romaniuk, “An Encoding of
Production Rules in a Connectionist Network”, Journal of
Intelligent and Fuzzy Systems, 4 (1), 1996, 1-18.

[10] Hatzilygeroudis, I., Prentzas, J., “Neurules: Improving the
Performance of Symbolic Rules”, International Journal on AI
Tools 9, 2000, 113-130.

[11] Hatzilygeroudis, I., Prentzas, J., “Constructing Modular
Hybrid Rule Bases For Expert Systems”, International Journal
on AI Tools 10, 2001, 87-105.

[12] Hatzilygeroudis, I., Prentzas, J., “An Efficient Hybrid
Rule-Based Inference Engine with Explanation Capability”,
Proceedings of the 14th International FLAIRS Conference, AAAI
Press, 2001, 227-231.

[13] Hatzilygeroudis I., Vassilakos P. J. and Tsakalidis A.,
“XBONE: A Hybrid Expert System for Supporting Diagnosis of
Bone Diseases”, C. Pappas, N. Maglaveras and J-R Scherrer
(Eds), Medical Informatics Europe’97 (MIE’97), IOS Press,
1997, 295-299.

[14] Maloof, M. A., Michalski, R. S., “Selecting Examples for
Partial Memory Learning”, Machine Learning 41, 2000, 27-52.

[15] McGarry, K., Wertmer, S., MacIntyre, J., “Hybrid neural
systems: from simple coupling to fully integrated neural
networks”, Neural Computing Surveys 2, 1999, 62-93.

[16] Neagu C-D and Palade V., “Modular Neuro-Fuzzy
Networks Used in Explicit and Implicit Knowledge Integration”,
Proceedings of the 15th International FLAIRS Conference, AAAI
Press, 2002, 277-281.

[17] Quah T-S, Tan C-L, Krishnamurthy R. S. and Srinivasan
B., “Towards integrating rule-based expert systems and neural
networks”, Decision Support Systems, 17 (2), 1996, 99-118

[18] Towell, G., Shavlik, J., “Knowledge-Based Artificial
Neural Networks”, Artificial Intelligence 70, 1994, 119-165.

[19] Wermter, S., Sun, R. (eds), Hybrid Neural Systems,
Springer-Verlag, Heidelberg, 2000.

	Dataset

