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Abstract 
An inference engine for a hybrid representation scheme 
based on neurules is presented. Neurules are a kind of 
hybrid rules that combine a symbolic (production rules) 
and a connectionist representation (adaline unit). The 
inference engine uses a connectionist technique, which is 
based on the ‘firing potential’, a measurement of the firing 
tendency of a neurule, and symbolic pattern matching. It is 
proved to be more efficient and natural than pure 
connectionist inference engines. Explanation of ‘how’ type 
can be provided in the form of if-then symbolic rules. 
 

1. Introduction 
There have been efforts at combining expert systems and 
neural networks (connectionism) into hybrid systems, in 
order to exploit their benefits (Medsker 1994). In some of 
them, called embedded systems, a neural network is used 
in the inference engine of an expert system. For example, 
in NEULA (Tirri 1995) a neural network selects the next 
rule to fire. Also, LAM (Medsker 1994) uses two neural 
networks as partial problem solvers. However, the 
inference process in those systems, although gains 
efficiency, lacks the naturalness and the explanation 
capability of the symbolic component. This is so, because 
pre-eminence is given to the connectionist framework. 
 On the other hand, connectionist expert systems are 
integrated systems that represent relationships between 
concepts, considered as nodes in a neural network. 
Weights are set in a way that makes the network infer 
correctly. The system in (Gallant 1993) is a popular such 
system, whose inference engine is called MACIE. Two 
characteristics of MACIE are: its ability to reason from 
partial data and its ability to provide explanations in the 
form of if-then rules. However, its inference process lacks 
naturalness. Again, this is due to the connectionist 
approach. 
 To improve the performance of connectionist expert 
systems, the “recency inference engine” and its 
corresponding explanation algorithm are introduced in 

(Ghalwash 1998). In order to assess its performance, 
which is better than MACIE, the ‘convergence rate’ is 
used, which is based on the number of known and 
necessary/required inputs. However, this measure does not 
take into account the internal number of computations 
made, which for large networks may be of importance. 
 In this paper, we present a hybrid inference engine and 
its associated explanation mechanism. The inference 
engine is related to neurules, a hybrid rule-based 
representation scheme integrating symbolic rules with 
neurocomputing, which gives pre-eminence to the 
symbolic component (Hatzilygeroudis and Prentzas 2000a, 
2000b). Apart from naturalness, experimental results 
demonstrate an improvement to the efficiency of the 
inference compared to those in (Gallant 1993) and 
(Ghalwash 1998).  
 The structure of the paper is as follows. Section 2 
presents neurules and Section3 the hybrid inference 
process introduced here with an example. In Section 4, the 
explanation mechanism is presented. Finally, Section 5 
presents some experimental results and concludes.  
 

2. Neurules 
2.1 Syntax and Semantics 
Neurules are a kind of hybrid rules. The form of a neurule 
is depicted in Fig.1a. Each condition Ci is assigned a 
number sfi, called its significance factor. Moreover, each 
rule itself is assigned a number sf0, called its bias factor. 
Internally, each neurule is considered as an adaline unit 
(Fig.1b). The inputs Ci (i=1,...,n) of the unit are the 
conditions of the rule. The weights of the unit correspond 
to the significance factors of the neurule and its bias is the 
bias factor of the neurule. Each input takes a value from 
the following set of discrete values: [1 (true), -1 (false), 0 
(unknown)]. The output D, which corresponds to the 
conclusion (decision) of the rule, is calculated via the 
formulas: 
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DR1: (-0.4) if HairLoss is true (3.6), 
   SwollenFeet is true (3.6), 
  RedEars is true (-0.8) 
                  then Disease is Supercilliosis 
 
DR2: (1.4) if Dizziness is true (4.6), 
   SensitiveAretha is true (1.8), 
  HairLoss  is true (1.8) 

where a is the activation value and f(x) the activation 
function, a threshold function: 

         f(a) =     (2) 

Hence, the output can take one of two values, ‘-1’ and ‘1’, 
representing failure and success of the rule respectively. 
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diagnoses are based on the symptoms and three possible 
treatments (Placibin, Biramibio, Posiboost). Also, 
dependency information is provided. We used the 
dependency information to construct the initial neurules 
and the training data provided to train them. The produced 
knowledge base, which contains six neurules (DR1-DR6), 
is illustrated in Fig.2.  

. . . 
(sf1)

(sf2) 
(sfn)

(sf0) 

D 

1 if a ≥ 0 
-1 otherwise 

 

 

(sf0) if C1 (sf1),

           C2   (sf2),

               … 

            Cn (sfn) 

        then D 

                  then Disease is Namastosis 
 
DR3: (-2.2) if  PlacibinAllergy is true (-5.4), 
  Disease is Supercilliosis (4.6) 
  Disease is Namastosis (1.8), 
                  then Treatment is Placibin 
 
DR4: (-4.0) if HairLoss is true (-3.6), 
   Disease is Namastosis (3.6), 
  Disease is Supercilliosis (2.8) 
                  then Treatment is Biramibio 
 
DR5: (-2.2) if Treatment is Biramibio (-2.6), 
  Treatment is Placibin (1.8) 
                  then Treatment is Posiboost 
 
DR6: (-2.2) if Treatment is Placibin (-1.8), 
  Treatment is Biramibio (1.0) 
                   then Treatment is Posiboost 
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Fig.1 (a) Form of a neurule (b) corresponding adaline unit  
 
e general syntax of a condition Ci and the conclusion D : 
ondition>::= <variable> <l-predicate> <value>  
onclusion>::= <variable> <r-predicate> <value> 

ere <variable> denotes a variable, that is a symbol 
resenting a concept in the domain, e.g. ‘sex’, ‘pain’ etc, 
a medical domain. A variable in a condition can be 

her an input variable or an intermediate variable, 
ereas a variable in a conclusion can be either an 
ermediate or an output variable or both. An input 
riable takes values from the user (input data), whereas 
ermediate and output variables take values through 
erence, since they represent intermediate and final 
nclusions respectively. <l-predicate> and <r-predicate> 
 one of {is, isnot}. <value> denotes a value. It can be a 
bol or a number. Neurules are distinguished in 

ermediate and output rules, depending on whether their 
nclusions contain intermediate or output variables 
pectively. 

 An Example Neurule Base 
urules are constructed either directly, from empirical 
ta, or by converting symbolic rules. In both cases, each 
urule is individually trained via the LMS algorithm. 
rmally, for each possible conclusion one neurule is 
duced. However, in case of inseparability in the 

ining set, where special techniques are used 
atzilygeroudis and Prentzas 2000c, 2001), more than 
e neurule are produced with the same conclusion. The 
nditions of a neurule are sorted so, that |sf1| ≥ |sf2| ≥ … ≥ 
|. 
To illustrate the functionalities of our system, we use as 
 example the one presented in (Gallant 1993). It contains 
ining data dealing with acute theoretical diseases of the 
cophagus. There are six symptoms (Swollen feet, Red 

rs, Hair loss, Dizziness, Sensitive aretha, Placibin 
ergy), two diseases (Supercilliosis, Namastosis), whose 

Fig.2 An example neurule base. 
 

3. The Hybrid Inference Engine 
 
3.1 The Process 
The hybrid inference engine implements the way neurules 
co-operate to reach a conclusion, which is based on the 
‘firing potential’, a measurement of the firing tendency of 
a neurule, which is similar to the ‘convergence ratio’ 
introduced in (Ghalwash 1998). The basic idea is: in each 
inference step, consider first the neurule with the largest 
firing potential, because it is the most likely to fire. 

Normaly, the output of a neurule is computed according 
to Eq. (1). However, it is possible to deduce the output of a 
neurule without knowing the values of all of its conditions. 
To achieve this, we define for each neurule the known sum 
(kn-sum) and the remaining sum (rem-sum) as follows:  
 
 
 
 

C1 C2 Cn

(3)

(4)



 

 

where E is the set of its evaluated conditions, U the set of 
its unevaluated conditions and Ci is the value of the ith 
condition. So, ‘known-sum’ is the weighted sum of the 
values of the already known (i.e. evaluated) conditions 
(inputs) of the corresponding neurule and ‘rem-sum’ 
represents the largest possible weighted sum of the 
remaining (i.e. unevaluated) conditions of the neurule. If 
|kn-sum| > rem-sum, for a certain neurule, then evaluation 
of its conditions can stop, because its output can be 
deduced regardless of the values of the remaining 
unevaluated conditions. So, we define the firing potential 
(fp) of a neurule: 
 
   fp =     (4) 
 
which is an estimate of its tendency to make its output 
‘±1’. Whenever fp > 1, the rule evaluates to ‘1’ (true), if 
kn-sum > 0 or to ‘-1’ (false), if kn-sum < 0. In the first 
case, we say that the neurule is fired, whereas in the 
second that it is blocked. Notice that fp has meaning only if 
rem-sum ≠ 0. If rem-sum = 0, all the conditions have been 
evaluated and its output is evaluated according to kn-sum. 

The inference process is as follows, where the ‘working 
memory’ (WM) is a place for keeping data. 

1. Initially, set the fps of all the neurules to their bias 
factors. If there is initial input data in the WM, find all 
the affected neurules and update their fps; they become 
the participating neurules. Otherwise, regard all neurules 
as participating. 

2. Do the following, 
2.1 If there is a participating neurule with (fp > 1 or 

rem-sum = 0) then if (kn-sum > 0), mark the rule as 
fired and its conclusion as ‘true’ and put it in the 
WM, otherwise (kn-sum < 0), mark the rule as 
blocked and if there is no other unevaluated neurule 
with the same conclusion, mark its conclusion as 
‘false’ and put it in the WM. 

2.2 Remove the above evaluated neurule from the 
participating rules. 

2.3 If the condition put in the WM is an intermediate 
one, find the affected neurules, put them in the 
participating neurules and update their fps. 

 until there is no participating neurule with fp > 1 or rem-
sum = 0. 

3. While there are participating neurules do, 
3.1 From the participating neurules select the one with 

the maximum fp. If there are no participating 
neurules, select an unevaluated one with the 
maximum fp. 

3.2 Consider the first unevaluated condition of the 
selected neurule. If it contains an input variable, ask 
the user for its value and put it in the WM. If it 
contains an intermediate variable instead, find an 
unevaluated neurule with the maximum fp that 
contains the variable in its conclusion and execute 
this step recursively taking this neurule as the 
selected. 

3.3 Clear participating rules. According to the input 
data, find all the affected neurules, update their fps 
and put them in the participating neurules. 

3.4 (the same as step 2). 
4. If there are no conclusions in the WM containing output 

variables, stop (failure). Otherwise, display the 
conclusions and stop (success). 

A neurule is evaluated, if it is fired or blocked, 
otherwise it is unevaluated. Also, affected neurules are 
those unevaluated neurules containing at least a 
condition with the same variable as that of the 
conclusion put in the WM. 
 

3.2 An Example Inference 
In this section, a hand tracing of an example inference 
from the neurule base in Fig. 2 is presented. Notice that 
DR1 and DR2 are intermediate neurules, DR3 and DR4 
are simultaneously intermediate and output neurules, 
whereas DR5 and DR6 are output neurules. Initially, the fp 
of each neurule is set to its bias factor.  

Step 1 
WM: {‘HairLoss is true’ (TRUE)} (Initial data) 
Affected neurules: [DR1, DR2, DR4] 
Updated fps: |3.2/4.4| = 0.73 (DR1), |3.2/6.4| = 0.5 (DR2),  
 |-7.6/6.4| = 1.19 (DR4) 
Partcipating  neurules: [DR1, DR2, DR4] 

Step 2  
Step 2.1 (DR4 has fp > 1 and kn-sum < 0) 

Blocked neurules: [DR4] 
WM: {‘HairLoss is true’ (TRUE),  
 ‘Treatment is Biramibio’ (FALSE)} 

Step 2.2 
Participating neurules: [DR1, DR2] 

Step 2.3 
Affected neurules: [DR5, DR6] 
Partcipating  neurules: [DR5, DR6, DR1, DR2] 
Updated fps: |0.4/1.8| = 0.22 (DR5), |-3.2/1.8| = 1.78 (DR6) 

Step 2  
Step 2.1 (DR6 has fp > 1 and kn-sum < 0). 

Blocked neurules: [DR6, DR4] 
Step 2.2 

Participating neurules: [DR5, DR1, DR2] 

Step 3 
Step 3.1 

Selected neurule: DR1  
Step 3.2 

User data: ‘SwollenFeet is true’ (FALSE) 
WM: {‘HairLoss is true’ (TRUE), 

 ‘Treatment is Biramibio’ (FALSE), 
 ‘SwollenFeet is true’ (FALSE)} 
Step 3.3 

Participating neurules: [ ] 
Affected neurules: [DR1] 
Updated fps: |-0.4/0.8| = 0.5 (DR1) 
Participating neurules: [DR1] 

Step 3.4 (no effect) 

kn-sum 
rem-sum 



 

 

Step 3.1 
Selected neurule: DR1  

Step 3.2 
User data: ‘RedEars is true’ (FALSE) 
WM: {‘HairLoss is true’ (TRUE),  

 ‘Treatment is Biramibio’ (FALSE), 
 ‘SwollenFeet is true’ (FALSE), 
 ‘RedEars is true’ (FALSE)} 
Step 3.3 

Participating neurules: [ ] 
Affected neurules: [DR1] 
Updated fps: kn-sum = 0.4, rem-sum = 0  
Participating neurules: [DR1] 

Step 3.4 (2) 
Step 3.4.1 (2.1) 

Fired neurules: [DR1] 
WM: {‘HairLoss is true’ (TRUE),  
 ‘Treatment is Biramibio’ (FALSE), 
 ‘SwollenFeet is true’ (FALSE),  
 ‘RedEars is true’ (FALSE),  
 ‘Disease is Supercilliosis’ (TRUE)} 

Step 3.4.2 (2.2) 
Participating neurules: [ ] 

Step 3.4.3 (2.3) 
Affected neurules: [DR3] (DR4 has been evaluated) 
Participating neurules: [DR3] 
Updated fps: |2.4/7.2| = 0.33 (DR3) 
(no neurule with fp > 1) 

Step 3.1 
Selected neurule: DR3 

Step 3.2 
User data: ‘PlacibinAllergy is true’ (FALSE) 
WM: {‘HairLoss is true’ (TRUE), 
 ‘Treatment is Biramibio’ (FALSE),  
 ‘SwollenFeet is true’ (FALSE), 
 ‘RedEars is true’ (FALSE),  
 ‘Disease is Supercilliosis’ (TRUE),  
 ‘PlacibinAllergy is true’ (FALSE)} 

Step 3.3 
Affected neurules: [DR3] 
Updated fps: |7.8/1.8| = 4.33 (DR3) 
Participating neurules: [DR3] 

Step 3.4 (2) 
Step 3.4.1 (2.1) 

Fired neurules: [DR1, DR3] 
WM: {‘HairLoss is true’ (TRUE), 
 ‘Treatment is Biramibio’ (FALSE),  
 ‘SwollenFeet is true’ (FALSE),  
 ‘RedEars is true’ (FALSE),  
 ‘Disease is Supercilliosis’ (TRUE),  
 ‘PlacibinAllergy is true’ (FALSE),  
 ‘Treatment is Placibin’ (TRUE)} 

Step 3.4.2 (2.2) 
Participating neurules: [ ] 

Step 3.4.3 (2.3) 

Affected neurules: [DR5] 
Participating neurules: [DR5] 
Updated fps: kn-sum = 2.2, rem-sum = 0  

Step 3.4.1 (2.1) 
Fired neurules: [DR5, DR3, DR1] 
WM: {‘HairLoss is true’ (TRUE), 
 ‘Treatment is Biramibio’ (FALSE),  
 ‘SwollenFeet is true’ (FALSE),  
 ‘RedEars is true’ (FALSE),  
 ‘Disease is Supercilliosis’ (TRUE),  
 ‘PlacibinAllergy is true’ (FALSE),  
 ‘Treatment is Placibin’ (TRUE),  
 ‘Treatment is Posiboost’ (TRUE)} 

Step 3.4.2 (2.2) 
Participating neurules: [ ] 

Step 3.4.3 (2.3) 
Participating neurules: [ ] 

So, we have the following final conclusions: 
Output data: ‘Treatment is Placibin’, ‘Treatment is Posiboost’ 
 

4. The Explanation Mechanism 
The explanation mechanism justifies inferences by 
producing a set of simple if-then rules, explaining how the 
conclusions were reached. The conclusions of the 
explanation rules contain the inferred output variables. 
Their conditions contain a subset of the input and 
intermediate variables participating in drawing the 
conclusions, that is those variables whose values were 
either given by the user or inferred during the inference 
process, possibly with changes to their predicates. More 
specifically, the conditions in the explanation rules are the 
ones with the most positive contribution in producing the 
output of the corresponding neurule. We call them positive 
conditions, whereas the rest negative conditions.  

In case a neurule's output evaluates to '1', the positive 
conditions are either the ones evaluated to true ('1') and 
having a positive significance factor or the ones evaluated 
to false ('-1') and having a negative significance factor. In 
case a neurule's output evaluates to '-1', the negative 
conditions are either the ones evaluated to true ('1') and 
having a negative significance factor or the ones evaluated 
to false ('-1') and having a positive significance factor. 
Conditions that are unknown or negative are not included 
in explanation rules. Furthermore, some of the positive 
conditions may be also not included, based on the fact that 
they are not necessary. The unnecessary positive 
conditions are the ones with the smallest absolute 
significance factors. 

For each of the fired output neurules, the explanation 
mechanism generates an if-then rule whose conclusion is 
the neurule's conclusion and its conditions are the 
necessary positive conditions of the neurule. Possible 
changes are made to the predicates according to the values 
of the conditions (e.g. if a necessary positive condition is 
evaluated to false, its predicate is changed from ‘is’ to 
‘isnot’ and vice versa). In addition, for each condition 



 

 

containing an intermediate variable, an if-then rule is 
produced based on an evaluated neurule having that 
condition as its conclusion. This process recurses. 

Table 1. The extracted explanation rules 
EXR1 
if HairLoss is true 
then Treatment isnot 
Biramibio 

EXR2 
if HairLoss is true, 
   RedEars is false 
then Disease is Supercilliosis 

EXR3 
if PlacibinAllergy is true, 
   Disease is Supercilliosis 
then Treatment is Placibin 

EXR4 
if Treatment isnot Biramibio, 
    Treatment is Placibin 
then Treatment is Posiboost. 

The explanation rules extracted for the example 
inference described in section 3.2 are shown in Table 1. In 
this case, there are two outputs, ‘Treatment is Posiboost’ 
and ‘Treatment is Placibin’, and the explanation 
mechanism provides explanations for them. It is easy then 
to produce a text explaining the inference. 

 
5. Experimental Results and Conclusion 

This section presents experimental results comparing the 
performance of our inference mechanism with that 
presented in (Gallant 1993) and (Ghalwash 1998). Our 
inference mechanism was applied to two neurule bases, 
directly created from two datasets (described below). The 
inference mechanisms in (Gallant 1993) and (Ghalwash 
1998) were applied to two connectionist knowledge bases, 
created from the same datasets by the technique described 
in (Gallant 1993). Both connectionist knowledge bases are 
multilevel networks. The comparison is made in terms of 
the number of inputs asked by the system in order to draw 
conclusions (as suggested in (Ghalwash 1998)) and the 
number of the conditions/inputs visited for some kind of 
computation in drawing the conclusions. 

The first dataset is that used in Section 3.2 and taken 
from (Gallant 1993). This dataset is incomplete. It consists 
of 8 input data patterns out of 64 possible. We ran the 
experiments with the 56 cases. The second dataset is taken 
from the machine learning ftp repository (see Dataset in 
the References) and involves a database for fitting contact 
lenses. This dataset is complete and contains 24 input 
patterns each consisting of four input and one output 
attribute (variable) which takes three possible values.  

Table2. Experimental results 
NEURULES GALLANT GHALWASH KB PA

TS ASK VIS ASK VIS ASK VIS 
KB1 56 202 586 231 986 207 882 
KB2 24 79 602 101 443 80 886 

Table 2 depicts the results. Initially, the values of all 
variables were not known. KB1and KB2 are the two 
knowledge bases and PATS the training patterns. ASK and 
VIS denote ‘asked inputs’ and ‘conditions visited’. 

Table 2 shows that our inference engine performed quite 
better than Gallant’s and slightly better than Ghalwash’s as 
far as the number of asked inputs is concerned. Also, it did 

much better, on the average, than both the other systems as 
far as conditions visits are concerned. Although this is not 
significant for small knowledge bases, it may become 
important for very large ones. 

On the other hand, due to the existence of intermediate 
cells in the other systems, the number of explanation rules 
produced by the explanation mechanisms in (Gallant 1993, 
Ghalwash 1998), to justify the same conclusions, are more 
than the ones produced by our explanation mechanism. 
This fact, besides the computational cost, raises an issue of 
comprehensibility as far as the user is concerned. The 
more explanation rules are presented to the user, the more 
confused he/she is. 

So, experimental results show an improvement to the 
performance of the inference engine compared to pure 
connectionist approaches. Also, the explanation 
mechanism seems to produce shorter explanations. 
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