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Abstract

In this paper, we present an approach that integrates symbolic rules, neural networks and cases. To achieve it, we integrate a kind of hybrid

rules, called neurules, with cases. Neurules integrate symbolic rules with the Adaline neural unit. In the integration, neurules are used to index

cases representing their exceptions. In this way, the accuracy of the neurules is improved. On the other hand, due to neurule-based efficient

inference mechanism, conclusions can be reached more efficiently. In addition, neurule-based inferences can be performed even if some of

the inputs are unknown, in contrast to symbolic rule-based inferences. Furthermore, an existing symbolic rule-base with indexed exception

cases can be converted into a neurule-base with corresponding indexed exception cases. Finally, empirical data can be used as a knowledge

source, which facilitates knowledge acquisition. We also present a new high-level categorization of the approaches integrating rule-based

and case-based reasoning.
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1. Introduction

Symbolic rules constitute a popular knowledge represen-

tation scheme used in the development of expert systems.

Rules represent general knowledge of the domain and

exhibit a number of attractive features such as, naturalness,

modularity and ease of explanation. One of their major

drawbacks is the difficulty to acquire them. The traditional

process of eliciting rules through interaction with the expert

may turn out to be a bottleneck, causing delays in the

system’s overall development (Gonzalez & Dankel, 1993).

Furthermore, the acquired rules may be imperfect and not

covering the full complexities of the domain. Rule induction

methods deal with many of these disadvantages, but

may still be unable to recognize exceptions in small,

low frequency sections of the domain (Cercone, An, &

Chan, 1999).

Case-based reasoning offers some advantages compared

to symbolic rules and other knowledge representation and

reasoning formalisms. Cases represent specific knowledge

of the domain, are natural and usually easy to obtain

(Aamodt & Plaza, 1994; Kolodner, 1993; Leake, 1996).

Incremental learning comes natural to case-based reasoning.

New cases can be inserted into a knowledge base without

making changes to existing knowledge. The more cases are

available, the better the domain knowledge is represented.

Therefore, the accuracy of a case-based system can be

improved throughout its operation stage, as new cases

become available. A negative aspect of cases compared to

symbolic rules is that they do not provide concise

representations of the incorporated knowledge. Also, it is

not possible to represent heuristic knowledge. Furthermore,

the time-performance of the retrieval operations is not

always the desirable.

Approaches integrating rule- and case-based reasoning

have resulted in interesting and effective knowledge

representation schemes (Aha & Daniels, 1998; Branting,

1999; Cercone et al., 1999; Freuder, 1998; Koton, 1988;

Leake, 1995; Marling, Petot, & Sterling, 1999).

The objective of these efforts is to derive hybrid

representations that augment the positive aspects of the

integrated formalisms and simultaneously minimize their

negative aspects.
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However, a more interesting approach would be one

integrating more than two reasoning methods towards the

same objective. In this paper, we introduce an approach

integrating three reasoning/computational schemes, namely

rule-based reasoning, neurocomputing and case-based

reasoning, in an effective way. To this end, we combine

neurules (Hatzilygeroudis & Prentzas, 2000), a kind of

hybrid rules, and cases, in a way similar to that in Golding

and Rosenbloom (1996), where symbolic rules are com-

bined with cases.

Neurules integrate (propositional type) symbolic rules

with neurocomputing. Neurules exploit advantages from

both symbolic rules and neural networks. Thus, the

approach in Golding and Rosenbloom (1996) is improved

in a number of ways. First, some of the benefits of the

neural networks, such as knowledge acquisition from

empirical data, reasoning from partial inputs and gene-

ralization capabilities, are added to the representation

scheme. Second, the size of the knowledge base is

significantly reduced and the performance of the approach

is improved. On the other hand, neurules are also

improved. Neurules can be produced from symbolic

rules, which constitute their source knowledge. If source

knowledge is incomplete or does not cover the full

complexities of the domain, this is reflected to the

produced neurules. Integrating neurules with cases, their

accuracy is improved. This paper is an extension to

Prentzas and Hatzilygeroudis (2002).

The rest of the paper is organized as follows. Section 2

presents neurules, whereas Section 3 presents the architec-

ture for integrating neurule- and case-based reasoning.

Section 4 presents methods for constructing the indexing

scheme of the case library. Section 5 describes the hybrid

inference mechanism. Section 6 presents experimental

results regarding the performance of the inference process.

Section 7 presents related work concerning approaches

integrating rule-based with case-based reasoning. Finally,

Section 8 concludes.

2. Neurules

During the last years, artificial neural networks have been

used quite often in the development of expert systems

(Gallant, 1993; Ghalwash, 1998). Neural networks represent

a totally different approach to the problem of knowledge

representation, known as connectionism (Gallant, 1988).

Some advantages of neural networks are their ability to

obtain their knowledge from training examples (reducing

the interaction with the experts), their high level of

efficiency and their ability to represent complex and

imprecise knowledge.

For those reasons, recently, there has been extensive

research activity at combining (or integrating) the symbolic

and the connectionist approaches. More specifically, there

are a number of efforts at combining symbolic rules and

neural networks for knowledge representation (Fu & Fu,

1990; Towell & Shavlik, 1994). Those approaches use a

neural network as a knowledge base, thus reducing know-

ledge elicitation from the experts to a minimum. In this way,

the knowledge acquisition bottleneck can be managed.

Those approaches, however, have a major drawback due to

the fact that they give pre-eminence to connectionism. More

specifically, the resulted knowledge bases lack the natural-

ness and modularity of symbolic rules. Rule extraction

methods are often used in order to comprehend their

encompassed knowledge (Towel & Shavlik, 1993).

Neurules are a type of hybrid rules integrating symbolic

rules with neurocomputing giving pre-eminence to the

symbolic component. Neurocomputing is used within

the symbolic framework to improve the performance of

symbolic rules (Hatzilygeroudis & Prentzas, 2000). In

contrast to other hybrid approaches (Gallant, 1993;

Ghalwash, 1998), the constructed knowledge base retains

the modularity of production rules, since it consists of

autonomous units (neurules), and also retains their natural-

ness in a great degree, since neurules look much like

symbolic rules. The size of the produced neurule bases is

significantly reduced compared to that of the equivalent

symbolic rule bases. Also, the inference mechanism is a

tightly integrated process, which results in more efficient

inferences not only than those in symbolic rules, but also

than those in connectionist approaches. Finally, expla-

nations in the form of if–then rules can also be produced

(Hatzilygeroudis & Prentzas, 2001a).

2.1. Syntax and semantics

The form of a neurule is depicted in Fig. 1a. Each

condition Ci is assigned a number sfi; called its significance

factor. Moreover, each rule itself is assigned a number sf0;

called its bias factor. Internally, each neurule is considered

as an adaline unit (Fig. 1b). The inputs Ciði ¼ 1;…; nÞ of the

unit are the conditions of the rule. The weights of the unit

are the significance factors of the neurule and its bias is

the bias factor of the neurule. Each input takes a value from

the following set of discrete values: [1 (true), 0 (false), 0.5

(unknown)]. This gives the opportunity to easily distinguish

between the falsity and the absence of a condition, in

Fig. 1. (a) Form of a neurule and (b) a neurule as an adaline unit.
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contrast to symbolic rules. The output D; which represents

the conclusion (decision) of the rule, is calculated via the

standard formulas:

D ¼ f ðaÞ; a ¼ sf0 þ
Xn

i¼1

sfiCi

f ðaÞ ¼
1; if a $ 0

21; otherwise

(

where a is the activation value and f ðxÞ the activation

function, a threshold function. Hence, the output can take

one of two values (‘ 2 1’, ‘1’) representing failure and

success of the rule, respectively.

The general syntax of a condition Ci and the conclusion

D is:

kconditionl:: ¼ kvariablelkl-predicatelkvaluel
kconclusionl:: ¼ kvariablelkr-predicatelkvaluel

where kvariablel denotes a variable, that is a symbol

representing a concept in the domain, e.g. ‘sex’, ‘pain’,

etc. in a medical domain. kl-predicatel denotes a symbolic

or a numeric predicate. The symbolic predicates are {is,

isnot}, whereas the numeric predicates are {, , . , ¼ }.

kr-predicatel can only be a symbolic predicate. kvaluel
denotes a value. It can be a symbol or a number. The

significance factor of a condition represents the signifi-

cance (weight) of the condition in drawing the conclusion.

A variable in a condition can be either an input variable

or an intermediate variable or even an output variable,

whereas a variable in a conclusion can be either an

intermediate or an output variable. An input variable takes

values from the user (input data), whereas intermediate

or output variables take values through inference

since they represent intermediate and final conclusions,

respectively. We also distinguish between intermediate and

output neurules. An intermediate neurule is a neurule

having an intermediate variable in its conclusion.

An output neurule is one having an output variable in its

conclusion.

2.2. Neurule base construction

Neurules can be produced either from symbolic rules,

thus exploiting existing symbolic rule bases, or from

empirical data. The symbolic rules should have the same

syntax as that in Fig. 1a, without the bias and significance

factors. In this case, ‘,’ denotes conjunction.

The process of producing neurules from existing

symbolic rules is presented in Hatzilygeroudis and

Prentzas (2000). According to that process, symbolic rules

are organized into merger sets. Each merger set contains

symbolic rules having the same conclusion. An adaline unit

is initially assigned to each merger set. Each unit (rule) is

individually trained via the well-known Least Mean Square

(LMS) algorithm. Its training set is based on the truth table

of the combined logical function of the rules (i.e. the

disjunction of the conjunctions of their conditions) in the

merger set. Thus, from each merger set, one neurule is

produced.

As an example, Table 1 presents three symbolic rules

(R1, R2, R3), from a medical application, that constitute a

merger set, that is they have the same conclusion. In Table 2,

the neurule (NR1) produced from that merger set is

presented. NR1 is said to be a merger of R1, R2 and R3.

NR1 fires (i.e. produces its conclusion) for the same input

data as that for R1–R3. In other words, NR1 substitutes for

R1–R3. Notice the potential reduction in the size of the

rule-base (from three rules with 11 conditions one neurule

with six conditions has been produced).

However, if the patterns in the training set of a neurule

form a non-linear set, the symbolic rules of the merger set

cannot be merged into one neurule, thus more than one

neurule having the same conclusion are produced (see an

example in a similar situation below, in the production of

neurules from empirical data).

The production of more than one neurule for the same

conclusion is a disadvantage of neurules, because in this

way the same knowledge is represented more than once.

However, the produced neurule base again is significantly

smaller than an equivalent of symbolic rules (Section 6).

The process of producing neurules from empirical data

is presented in Hatzilygeroudis and Prentzas (2001b).

Empirical data is given in the form of knowledge patterns.

A knowledge pattern relates a number of variables with

Table 1

Symbolic rules of a merger set

R1 R2

if patient-class is human0–20, if patient-class is human21–35,

pain is night, pain is night,

fever is no-fever, ant-reaction is none

ant-reaction is none then disease-type is primary-malignant

then disease-type is primary-malignant

R3

if patient-class is human21–35,

pain is continuous,

fever is no-fever,

ant-reaction is none

then disease-type is primary-malignant

Table 2

Neurule produced from the merger set of Table 1

NR1

(27.8) if patient-class is human21–35 (6.9),

pain is night (6.4),

ant-reaction is none (6.3),

patient-class is human0–20 (3.0),

fever is no-fever (2.7),

pain is continuous (2.6)

then disease-type is primary-malignant
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a tuple of (their) values. Each variable can take values from a

set of discrete values. Each pattern has the following format:

½v1; v2;…; vn; d�

where d is the value of an intermediate or output variable

and viði ¼ 1; nÞ are the values of the variables it depends on.

For example, Table 3 contains 10 knowledge patterns

concerning the intermediate variable ‘mark-level’ and

the variables it depends on (‘solution-attempts’,

‘requested-examples’, ‘assistance-times’), related to a

tutoring system domain.

The main objective of the process is to create one neurule

for each discrete value of each intermediate or output

variable in the domain. However, due to possible non-

linearity of the knowledge patterns, this is not always

feasible (as also happens in the case of producing neurules

from symbolic rules). So, finally more than one neurule are

produced for some value(s).

For example, the neurules produced from the knowledge

patterns of Table 3 are presented in Table 4. Notice that,

although there is only one neuruele for the ‘low’ and ‘high’

values of ‘mark-level’ (NP1, NP4), there are two neurules

for the value ‘average’ (NP2, NP3). This is because

the patterns in the corresponding training set for ‘average’

value form a non-linear set.

2.3. Neurule-based inference

The neurule-based inference engine gives pre-eminence

to symbolic reasoning, based on a backward chaining

strategy. The inference engine uses the working memory,

which contains facts acquired from the user prior to the

inference process (i.e. initial input data) and/or produced

during the inference process. A fact has the same format as a

condition/conclusion of a symbolic rule.

As soon as the initial input data is given and put in the

working memory, the output neurules are considered for

evaluation. One of them is selected for evaluation. Selection

is based on the order they are stored. Evaluation of a neurule

is based on neurocomputing measures. A neurule fires if

the output of the corresponding adaline unit is computed to

be ‘1’ after evaluation of its conditions. A neurule is said to

be ‘blocked’ if the output of the corresponding adaline unit

is computed to be ‘ 2 1’ after evaluation of its conditions.

A condition evaluates to ‘true’, if it matches a fact in the

working memory, that is, there is a fact with the same

variable, predicate and value. A condition (containing an

input variable) evaluates to ‘unknown’, if there is a fact with

the same variable, predicate and ‘unknown’ as its value

(provided by the user). A condition cannot be directly

evaluated if there is no fact in the working memory with the

same variable. In this case, either a question is made to the

user to provide data for the variable, in case of an input

variable, or an intermediate neurule with a conclusion

containing the variable is examined, in case of an

intermediate variable. A condition with an input variable

evaluates to ‘false’, if there is a fact in the working

memory with the same variable, predicate and different

value. A condition with an intermediate variable evaluates to

‘false’ if additionally to the latter there is no unevaluated

intermediate neurule that has a conclusion with the same

variable. Inference stops either when one or more output

neurules are fired (success) or there is no further action

(failure).

The conditions of a neurule are organized in descending

order of the absolute value of their significance factors. This

facilitates inference. Thus, when a neurule is examined in

the inference process, not all of its conditions need to be

evaluated. To achieve this, we define for each neurule the

known sum (ks) and the remaining sum (rs) as follows:

Table 3

Knowledge patterns for variable ‘mark-level’

Solution-attempts Requested-examples Assistance-times Mark-level

1 0 1 High

2 1 1 Average

1 .1 0 High

2 0 1 Average

.2 1 .1 Low

1 .1 .1 Average

.2 0 1 Low

2 1 0 Average

2 .1 .1 Low

.2 0 0 Average

Table 4

Neurules produced from the knowledge patterns of Table 3

NP1 NP3

(20.5) if assistance-times is 0

(24.6),

(22.6) if solution-attempts is 2

(26.2),

solution-attempts is 1 (23.8), requested-examples is 1 (26.0),

solution-attempts is .2 (3.0), assistance-times is 1 (25.7),

assistance-times is .1 (2.8), assistance-times is .1 (4.7),

requested-examples is 0 (22.0), requested-examples is 0 (3.2),

requested-examples is 1 (0.90), assistance-times is 0 (22.7),

requested-examples is .1 (20.70), solution-attempts is .2 (2.6),

solution-attempts is 2 (20.30), solution-attempts is 1 (21.0),

assistance-times is 1 (20.30) requested-examples is .1 (20.2)

then mark-level is low then mark-level is average

NP2 NP4

(21.0) if assistance-times is .1

(24.1),

(20.8) if solution-attempts is 1

(3.2),

solution-attempts is .2 (22.8), assistance-times is .1 (22.7),

requested-examples is .1 (22.2), solution-attempts is 2 (22.6),

assistance-times is 1 (1.6), requested-examples is 1 (22.6),

requested-examples is 1 (1.5), solution-attempts is .2 (22.5),

solution-attempts is 2 (1.3), requested-examples is 0 (1.4),

assistance-times is 0 (1.3), assistance-times is 1 (1.0),

requested-examples is 0 (20.6), requested-examples is .1 (20.7),

solution-attempts is 1 (20.4) assistance-times is 0 (20.3)

then mark-level is average then mark-level is high
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ks ¼ sf0 þ
X

condi[E

sfiCi

rs ¼
X

condi[U

lsfil

where E is the set of evaluated conditions, U the set of

unevaluated conditions and Ci is the value of condition condi:

So, ks is the sum of the values of the already known (i.e.

evaluated) conditions (inputs) of the corresponding neurule

and rs represents the largest possible weighted sum of the

remaining (i.e. unevaluated) conditions of the neurule.

When a neurule is under evaluation, ks and rs are

(re)calculated after evaluation of each condition of the

neurule. When lksl . rs; for a certain neurule, then

evaluation of its conditions stops, because its output can

be deduced regardless of the values of the unevaluated

conditions. In this case, its output is guaranteed to be ‘ 2 1’

if ks , 0; or ‘1’, if ks . 0: The condition after the

evaluation of which the output of the neurule can be

deduced is called the critical condition.

Also, we introduce the following heuristics that further

improve the performance of the neurules. First, if

a condition evaluates to ‘true’ (e.g. ‘assistance-times is

.1 (24.1)’ in NP2, Table 4), then the unevaluated

conditions containing the same variable, called its

homonymous conditions (i.e. ‘assistance-times is 1

(1.6)’ and ‘assistance-times is 0 (1.3)’) do not contribute

to the remaining sum, because they certainly evaluate to

‘false’, hence they result in a zero value. In any other

case, from unevaluated conditions with the same

variable, only the one with the maximum absolute factor

value contributes to the remaining sum. For example,

after evaluation of condition ‘assistance-times is .1

(2.8)’ in NP1 (Table 4), only condition ‘requested-

examples is 0 (22.0)’ contributes to the remaining sum,

because its homonymous conditions, ‘requested-examples

is 1 (0.90)’ and ‘requested-examples is .1 (20.70)’,

have less absolute factor values and these three

conditions cannot be simultaneously true. Also, the last

two conditions do not contribute, because they are

certainly false (one of their homonymous conditions

has already evaluated to ‘true’).

To illustrate how inference is made, we present the

following example. Suppose that we have a knowledge base

containing the four neurules of Table 4 (Section 2.2) and a

working memory with the following facts in it: {‘solution-

attempts is 1’, ‘requested-examples is .1’, ‘assistance-

times is .1’}. The inference engine starts examining each

one of the neurules, to find whether any of them fires

(succeeds). As mentioned, the neurules are evaluated in the

order they are stored. The known and remaining sums are

calculated for each neurule after each condition evaluation

(recall that the value of a condition is ‘1’ if it is true and ‘0’

if it is false). The ks and rs for each neurule after the critical

condition (specified within the parentheses) evaluation are

as follows:

NP1 (after evaluation of its fifth condition): ks1 ¼ 21:5;

rs1 ¼ 0:9 (failure, because lks1l ¼ 1:5 . rs1 and

ks1 , 0);

NP2 (after evaluation of its third condition): ks2 ¼ 27:3;

rs2 ¼ 1:6 (failure, because lks2l ¼ 7:3 . rs2 and

ks2 , 0);

NP3 (after evaluation of its seventh condition): ks3 ¼

2:1; rs3 ¼ 1:2 (success, because lks3l ¼ 2:1 . rs3 and

ks3 . 0).

Because NP3 succeeds, the inference process stops

and the conclusion ‘mark-level is average’ is produced

and put in the working memory. Notice that not all of

the conditions of the neurules have been evaluated to

reach a conclusion.

Experimental results have shown that neurule-based

inference is more efficient than the corresponding symbolic

rule-based inference. The main reason for this is the fact that

a neurule is a merger of usually more than one symbolic rule

having the same conclusion and thus the total number of

rules and the conditions in the rule base is reduced. In this

way, the number of the rules and the conditions participating

in the inference process is reduced. This is intensified due to

the heuristics introduced above (Section 6).

Another advantage of neurule-based reasoning com-

pared to symbolic rule-based reasoning is the ability to

reach conclusions from neurules even if some of the

conditions are unknown (i.e. from partial input). This is

not possible in symbolic rule-based reasoning. A symbolic

rule needs all of its conditions to be known in order to

produce a conclusion.

For example, if ‘solution-attempts is unknown’ is in the

working memory (instead of ‘solution-attempts is 1’) in

the above example, then again NP3 succeeds, whereas NP1

and NP2 fail. The policy we follow in the case of a variable

with ‘unknown’ as its value is as follows: the contribution to

the known sum is the average value of the significance

factors of all the homonymous conditions of that variable

multiplied by 0.5. In our case, the average value of the

significance factors of the homonymous conditions of

‘solution-attempts’ is (26.2 þ 2.6 2 1.0)/3 ¼ 21.53.

Also, after that contribution, which happens when one of

the homonymous conditions is met, the rest of them do not

contribute to either the known or the remaining sum any

more. To illustrate the evaluation process, we present

evaluation of NP3 in some detail:

Because, after the evaluation of the fifth condition (the

critical condition), lksl ¼ 0:57 . rs ¼ 0:2 and ks . 0; NP3

Condition ks rs

1 22.6 þ (21.53) ¼ 24.13 6.0 þ 5.7 ¼ 11.7

2, 3 24.13 þ 0 ¼ 24.13 4.7 þ 3.2 ¼ 7.9

4 24.13 þ 4.7 ¼ 0.57 3.2

5 0.57 þ 0 ¼ 0.57 0.2
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succeeds and its conclusion is added to the working

memory. This does not happen with symbolic rules, where

evaluation stops in such cases.

2.4. Neurule-based explanation mechanism

As it is well known, one of the advantages of symbolic

rule-based reasoning is the ease of producing explanations

for the conclusions. This is achieved by tracing the fired

rules in the reverse order.

The neurule-based explanation mechanism justifies

inferences by producing a set of symbolic (if–then) rules,

thus providing an explanation of how the conclusions were

reached from a neurule base. To this end, for each of the

fired output neurules, the explanation mechanism generates

an if – then rule whose conclusion is the neurule’s

conclusion and its conditions are the necessary conditions

of the neurule. The necessary conditions of a fired neurule

are (a) those evaluated to ‘true’ and (b) the first of the

remaining (unevaluated) conditions that evaluates to ‘true’.

The need for (b) comes from experimental results. We

noticed that conditions that evaluated to ‘true’ were not

adequate by themselves to produce explanation rules. There

was always one of the remaining conditions missing. This is

basically due to deficiencies of the training algorithm

(LMS). In addition, for each condition containing an

intermediate variable, an if–then rule is produced based

on an evaluated (fired) neurule having that condition as its

conclusion, in the same way. This process recurses.

The above explanation process is different from that in

Hatzilygeroudis and Prentzas (2001a), because a different

set of condition values is used here, i.e. (‘1’, ‘0’, ‘0.5’) is

used instead of (‘1, ‘ 2 1’, ‘0’), for naturalness reasons.

This change affects the explanation mechanism.

So, the variables in the conditions of the explanation rules

are either input variables whose values were given by the user

or intermediate variables whose values were derived during

inference. The conclusions of the explanation rules corre-

spond to the derived final conclusions (i.e. the ones

containing output variables) and to the intermediate

conclusions that contributed to drawing the final conclusions.

For example, in the initial above example, because there

is only one final conclusion and not any intermediate ones,

only one explanation rule is produced, derived from NP3:

According to the explanation mechanism, the necessary

conditions of EXR1 are (a) the conditions that evaluated to

‘true’ (‘assistance-times is .1’) and (b) the first of the

unevaluated conditions that evaluates to ‘true’ (‘solution-

attempts is .1’), given the content of the working memory

at that stage.

3. The hybrid architecture

In Fig. 2, the architecture of the hybrid system

implementing the method for integrating neurule- and

case-based reasoning is presented. The run-time system

(in the dashed shape) consists of the following modules: the

working memory, the hybrid inference mechanism,

the hybrid explanation mechanism, the neurule base and

the indexed case library.

The neurule base contains neurules that represent general

domain knowledge. The neurules can be produced by

conversion from an existing symbolic rule base, as specified

in Section 2.2. This process is performed by the rules to

neurules module. Alternatively, neurules can be produced

from existing empirical data, as specified in Section 2.2 too.

This process is performed by the patterns to neurules

module.

Fig. 2. The hybrid architecture.
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The neurule base is used to index a case library. Thus,

the indexed case library is derived. The cases in the indexed

case library act as exceptions to the neurules in the neurule

base. Each case is formalized as a set of attribute–value

pairs. In a case, we distinguish between its input attributes

and its output attribute. The output attribute is the one that

represents the (observed) outcome/decision produced/made

in a case and matches the variable of the conclusion of the

associated neurule. The rest attributes of a case are its input

attributes. So, a case is represented as a tuple of the

following format:

½i1; i2;…; im; o�

where ijðj ¼ 1;mÞ are values of the input attributes and o is

the value of the output attribute of the case. The process of

establishing an indexing between neurules and cases is

performed offline by the indexing construction module and

is presented in Section 4.

The hybrid inference mechanism makes inferences by

combining neurule- and case-based reasoning. It takes into

account the facts contained in the working memory, the

neurules in the neurule base and the cases in the indexed

case library. The hybrid inference mechanism is presented

in Section 5.

The hybrid explanation mechanism provides expla-

nations in the way described in Section 2.4.

4. Indexing

Indexing concerns organizing the available cases so, that

the combined neurule- and case-based reasoning can be

performed. The neurules contained in the neurule base are

used to index cases representing exceptions to them. A case

constitutes an exception to a neurule if its attribute values

satisfy a sufficient number of conditions of the neurule (so

that it can fire), but the neurule’s conclusion contradicts the

corresponding attribute value of the case. Cases that are

exceptions to neurules are considered of great importance,

as they fill gaps in the knowledge represented by the

neurules. During inference, exceptions may assist in reach-

ing the right conclusion.

We distinguish two indexing processes: direct indexing

and indirect indexing. Direct indexing concerns associating

available cases to neurules, which is the normal case.

Indirect indexing deals with associating already indexed

cases, by existing symbolic rules, to neurules produced from

the symbolic rules. The type of the available knowledge

determines which process should be used.

4.1. Direct indexing

The objective of the direct indexing process is to

associate the available neurules with the available cases,

which will constitute their exceptions. The direct process is

as follows:

For each case,

Until all its input attribute values have been considered,

1. Perform neurule-based reasoning taking as initial data

the input attribute values of the case.

2. If a neurule fires, check whether its conclusion value

matches the corresponding output attribute value of

the case, given that the variable of the conclusion is

the same as the output attribute. If it does not,

mark the case as an exception to this neurule.

As an example, to demonstrate how the indexing process

works, we use neurule NR2 (produced in a similar Way to

NR1), presented in Table 5, and the two example cases in

Table 6. Only the most important attributes of the cases are

shown in Table 6. The cases, however, also posses other

attributes (not shown in Table 6).

‘disease-type’ is the output attribute that corresponds to

the neurule’s conclusion variable. Let ks1 and rs1 be the

known and remaining sum of the neurule, respectively, for

the first case. Also, let ks2 and rs2 be the known and remaining

sum, respectively, for the second case. Evaluation of

conditions for the first (second) case continues until lks1l .
lrs1lðlks2l . lrs2lÞ: Recall that when a condition evaluates to

‘true’ it gets the value ‘1’, whereas in case it is false the value

‘0’. The tracings of the evaluations of neurule NR2 for the

two cases of Table 6 are presented in Table 7. Notice that the

final values of the known and remaining sums are:

ks1 ¼ 1:3 . 0; rs1 ¼ 1:6

ks2 ¼ 0:6 . 0; rs2 ¼ 0:

Table 5

Example neurule

NR2

(213.1) if pain is continuous (6.9),

fever is high (5.2),

fever is medium (4.8),

patient-class is human21–35 (2.7),

patient-class is human0–20 (1.6)

then disease-type is inflammation

Table 6

Example cases

Case no. Patient-class Pain Fever Ant-reaction Joints-pain Disease-type

1 human21–35 continuous medium high yes special-arthritis

2 human0–20 continuous high high no inflammation

I. Hatzilygeroudis, J. Prentzas / Expert Systems with Applications 27 (2004) 63–75 69



So, the input attribute values of both cases give a positive

known sum for the neurule’s conditions. The fact that the

known sums are positive means that both cases concern

the ‘inflammation’ disease-type conclusion. However, only

the output value of the disease-type of the second case

matches the neurule’s conclusion. The corresponding output

value of the first case contradicts the conclusion, hence that

case is indexed as an exception to NR2.

4.2. Indirect indexing

Indirect indexing is used when existing symbolic rules

with associated exception cases are available, for example

like those in Golding and Rosenbloom (1996). The process

is as follows:

1. Convert the symbolic rules into neurules via the ‘rules to

neurules’ module

2. Associate the produced neurules with the exception cases

of the symbolic rules belonging to their merger sets.

Of course, existing symbolic rules are converted to the

format described in Section 2.2, before the above process is

applied.

As an example, consider the three symbolic rules (R1,

R2, R3) presented in Table 1. Table 8 presents some of their

exception cases. The symbolic rule, to which each of these

example cases is an exception, is shown in the ‘disease-

type’ column of the table in parentheses. As mentioned in

Section 2.2, by merging those three symbolic rules neurule

NR1 is produced (Table 2). The cases in Table 8 are now

indexed as exceptions to NR1. The produced neurule has

now four exception cases.

Notice that the exceptions of NR1 are more than the

average number of exceptions that the symbolic rules in its

merger set had. So, a potential disadvantage of this process

could be the fact that in average a produced neurule will be

associated with more exception cases than each of its

merged symbolic rules. This may negatively affect the case-

based reasoning part of the inference process. However, the

explanation rule produced from the neurule can be used to

surpass this deficiency by limiting the exception cases

considered by case-based reasoning (Section 5).

5. The hybrid inference mechanism

The hybrid inference mechanism combines neurule-

based reasoning with case-based reasoning. The com-

bined inference process mainly focuses on the neurules.

The exception cases are considered only when sufficient

conditions of a neurule are fulfilled so that it can fire.

Then, firing of the neurule is suspended and case-based

reasoning is performed on its exception cases. To reduce

the number of exception cases to be taken into account,

the corresponding explanation rule is produced. Then,

only the exception cases that match the explanation rule

are considered. Matching the explanation rule means

making all its conditions true. The results produced

by case-based reasoning are evaluated in order to

assess whether the neurule will fire or whether the

conclusion proposed by the exception case will be

considered valid.

Case-based reasoning and evaluation of its results is

performed as in Golding and Rosenbloom (1996). Accord-

ing to that, case-based reasoning tries to find similarities

between input data and exception cases. If such a similarity

is found, an analogy rule encompassing the similar attribute

values between the indexed case and the input case is

produced. The analogy rule is then evaluated. Evaluation is

Table 7

NR2 evaluation tracings for the cases of Table 4

Condition no. Case 1 Case 2

ks1 rs1 ks2 rs2

1 213.1 þ 6.9 ¼ 26.2 5.2 þ 4.8 þ 2.7 þ 1.6 ¼ 14.3 213.1 þ 6.9 ¼ 26.2 5.2 þ 4.8 þ 2.7 þ 1.6 ¼ 14.3

2 26.2 þ 0 ¼ 26.2 4.8 þ 2.7 þ 1.6 ¼ 9.1 26.2 þ 5.2 ¼ 21.0 4.8 þ 2.7 þ 1.6 ¼ 9.1

3 26.2 þ 4.8 ¼ 21.4 2.7 þ 1.6 ¼ 4.3 21.0 þ 0 ¼ 21.0 2.7 þ 1.6 ¼ 4.3

4 21.4 þ 2.7 ¼ 1.3 1.6 21.0 þ 0 ¼ 21.0 1.6

5 21.0 þ 1.6 ¼ 0.6 0

Table 8

Exception cases indexed by the symbolic rules in Table 3

Case no. Patient-class Pain Fever Ant-reaction Joints-pain Disease-type

1 human0–20 night no-fever none yes inflammation (R1)

2 human21–35 night no-fever none no arthritis (R2)

3 human21–35 continuous no-fever none no primary-benign (R3)

4 human21–35 continuous no-fever none yes chronic-inflammation (R3)

I. Hatzilygeroudis, J. Prentzas / Expert Systems with Applications 27 (2004) 63–7570



based on two factors: the similarity degree between the

input case and the exception case and how well the analogy

rule works (generalizes) on other exception cases. If the

analogy between the input case and an exception case is

proved to be compelling, the conclusion supported by the

case is considered valid and the associated neurule becomes

‘blocked’. Compellingness is precisely defined in Golding

and Rosenbloom (1996) and is not of concern in this paper.

The basic steps of the inference process combining

neurule- and case-based reasoning are as follows:

1. Perform neurule-based reasoning on the input data.

2. If an adequate number of the conditions of a neurule

are fulfilled (so that it can fire), then

2.1. If the neurule has no associated exception cases,

activate firing and insert its conclusion into the

working memory.

2.2. If the neurule is associated with exception

cases, suspend firing. Produce the corresponding

explanation rule and perform case-based reasoning

on the neurule’s associated exception cases that match

the explanation rule.

2.3. If the analogy rule proposed by case-based

reasoning is compelling, insert the conclusion

supported by the exception case into the working

memory and mark the neurule as ‘blocked’.

Otherwise, mark the neurule as ‘fired’ and insert

its conclusion into the working memory.

We now present a simple example. For the sake of

simplicity, we consider that only the similarity degree

between the input data and the exception case is taken

into account for its evaluation. The similarity degree

is defined as the number of the common attribute–value

pairs of the two cases (the input and the exception).

Also, we consider that the exception case is valid if the

similarity degree is equal to or greater than the

the number of conditions of the produced explanation

rule.

Suppose that the case in Table 9 is given as input to

neurule NR1 (Table 2).

Evaluation of the rule stops after its third condition

(critical condition) has been evaluated, because the absolute

value of the known sum (27.8 þ 6.9 þ 6.4 þ 6.3 ¼ 11.8)

is greater than the value of the remaining sum

(2.7 þ 2.6 ¼ 5.3).

The explanation rule (EXR2) produced from neurule

NR1, via the explanation mechanism (Section 2.4), is

shown in Table 10. Firing the neurule is suspended and

the exception cases matching the explanation rule are

considered in the case-based reasoning process. From the

exception cases shown in Table 8, only the second one

matches the explanation rule. So, only this exception case is

considered. Notice that EXR2 is the same as R2 (Table 1)

and that the second case of Table 8 was associated to R2. So,

it is like extracting from the neurule the symbolic rule from

the neurule’s merger set, which would fire.

The similarity degree between the input and the

exception case is 3, which is equal to the number of the

conditions of the explanation rule. So, the exception case is

considered valid and its conclusion, based on its output

attribute–value pair (‘disease-type is arthritis’) is produced

and put in the working memory. NR1 is blocked.

Suppose now that the same input case was given to

the three symbolic rules shown in Table 1. In the

symbolic rule-based reasoning part of the inference, the

order that the rules will be considered is R1, R2, and R3.

The conditions of rule R1 are not satisfied. However, all

conditions of rule R2 are satisfied. Thus, four rule

conditions should be examined (one for R1 and three for

R2), instead of the three conditions examined in neurule-

based reasoning. Firing of rule R2 is suspended and its

indexed exception cases (i.e. the second case in Table 8)

will be considered by case-based reasoning.

So, both types of inference mechanisms produce the

same results. However, the inference mechanism combining

neurule- and case-based reasoning requires the examination

of fewer conditions (Section 6).

6. Experimental results

To test the effectiveness of our approach, we used a

symbolic rule base concerning a medical application

domain (Hatzilygeroudis, Vassilakos, & Tsakalidis, 1997)

The symbolic rule base contained 58 symbolic rules

acquired by interviewing an expert. The symbolic rules

were indexing available exception cases in order to improve

their accuracy. This combined symbolic rule base and

indexed case library will be referred to as SRCL. By using

the rules-to-neurules module, the symbolic rules were

converted to neurules. In total, 34 neurules were produced

(i.e. a 41% in rule number reduction and about 30% in

Table 9

An input case to neurule NR1

Patient-class Pain Fever Ant-reaction Joints-pain

human21–35 night high none no

Table 10

Explanation rule produced for neurule N1
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condition number reduction). The exception cases of the

merged symbolic rules were indexed by the produced

neurules, as specified in Section 4. The combined neurule

base and indexed case library will be referred to as NRCL.

Inferences were run for both SRCL and NRCL.

Inferences from SRCL were performed using the inference

mechanism combining rule- and case-based reasoning as

described in Golding and Rosenbloom (1996). Inferences

from NRCL were performed according to the inference

mechanism integrating neurule- and case-based reasoning,

introduced here. As expected, inferences produced the same

conclusions from both SRCL and NRCL for the same

variable-value data. However, inferences from NRCL

required evaluation of fewer conditions than the correspond-

ing inferences from SRCL.

Table 11 presents experimental results regarding infer-

ences from SRCL and NRCL. It presents results regarding

the number of visited rules as well as the number of

evaluated conditions. The table also presents whether the

conclusion was derived as an exception or not (column

‘Exception Occurred’).

As can be seen from the table, there is an average 45%

reduction in the rules visited in NRCL. Furthermore, about

25% fewer conditions were evaluated in inferences from

NRCL. Finally, the integration with case-based reasoning

improved the accuracy of the inference mechanism in about

30% of the inferences.

7. Related work

According to our knowledge, there are no systems

integrating rules, cases and neural networks. Our approach

integrates an hybrid representation formalism, namely

neurules, where the rule-based approach dominates, with a

case-based approach. Thus, we present here, as related

work, approaches that integrate rule- and case-based

reasoning. In doing that we also propose a new high-level

categorization scheme.

Various methods integrating rule-based with case-based

reasoning have been developed during the last years. Legal

reasoning seems to be a popular application field for the

integrated approaches. This is so, because legal reasoning

concerns rules containing terms (i.e. open-textured terms)

which are not well defined and need an integration with

cases to reach (or enhance) a conclusion. Examples of

integrated approaches used in legal reasoning include

GREBE (Branting, 1991, 1999), CABARET (Rissland &

Skalak, 1991), IKBALS II (Vossos, Zeleznikow, Dillon, &

Vossos, 1991; Zeleznikow, Vossos, & Hunter, 1994),

SHYSTER-MYCIN (O’Callaghan, Popple, & McCreath,

2003). Other application fields of the integrated approaches

include medicine (Bellazi, Montani, Portinale, & Riva,

1999; Bichindaritz & Sullivan, 1998a,b; Park, Oh, Jeong, &

Park, 2000), surname pronunciation, ANAPRON (Golding

& Rosenbloom, 1996), part-of-speech tagging (Lopes

& Jorge, 2000a,b), music (Sabater, Arcos, & Lopez de

Mantaras, 1998), design of nutrition menus (Marling et al.,

1999).

In Golding and Rosenbloom (1996), the approaches

integrating rule- and case-based reasoning are distinguished

into two basic categories: efficiency-improving and accu-

racy-improving methods. The former concern integration

methods in which rules and cases are dependent, meaning

that one representation scheme was derived from the other

(i.e. rules derived from cases or vice versa), and the

efficiency of the integrated scheme exceeds the efficiency

that could have been achieved with rules or cases alone

(Koton, 1988; Veloso, 1992). The latter involves

approaches in which the two representation schemes are

independent and their integration results in improved

accuracy compared to each component representation

scheme working individually (Branting, 1991; Golding &

Rosenbloom, 1996; Rissland & Skalak, 1991).

The above categorization scheme may not be always

adequate to classify approaches integrating rule- and case-

based reasoning, because it bases its high-level classifi-

cation on combined criteria. It supposes that (a) efficiency

improvement goes with systems where cases and rules are

dependent and (b) accuracy improvement goes with systems

where cases and rules are independent. However, there may

be systems that improve efficiency, where rules and cases

are not dependent or vice versa. For example in (Bellazi

et al., 1999), cases and rules are independent and mainly

efficiency is improved.

Table 11

Experimental results

Inference

no.

Rules visited,

SRCL/NRCL

Conditions evaluated,

SRCL/NRCL

Exception

occurred

1 8/4 17/10 No

2 11/6 26/19 Yes

3 13/8 26/22 No

4 17/10 34/27 No

5 20/10 28/19 No

6 21/10 32/24 No

7 22/10 31/23 No

8 23/10 35/22 No

9 24/11 43/31 No

10 25/12 47/37 No

11 26/13 48/39 Yes

12 29/15 57/44 Yes

13 30/15 59/46 Yes

14 31/15 63/42 No

15 32/16 58/43 Yes

16 34/18 70/48 No

17 35/19 64/49 Yes

18 41/23 77/57 No

19 42/24 77/66 No

20 43/24 78/63 Yes

21 44/24 78/58 No

22 47/26 86/71 No

23 48/27 86/66 No

24 49/27 90/64 Yes

25 51/28 76/60 No

26 54/30 72/57 No

Total 820/435 1458/1107
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We propose a high-level categorization based on the way

that rules and cases are integrated. So, we distinguish three

main categories: rule-dominant, case-dominant and

balanced approaches, depending on which of the two

component approaches dominates.

The rule-dominant category includes approaches like the

ones used in (Dutta & Bonissone, 1993; Golding &

Rosenbloom, 1996; Surma & Vanhoof, 1995, 1998),

IKBALLS II (Lopes & Jorge, 2000a,b; Park et al., 2000;

Vossos et al., 1991; Zeleznikow, Vossos, & Hunter, 1994)

and SHYSTER-MYCIN (O’Callaghan et al., 2003). In

Dutta and Bonissone (1993), rules are used to represent

domain knowledge in a system called MARS, which is used

to make decision about mergers and acquisitions in the

corporate domain. Case-based reasoning is activated by

selective rules during the course of rule-based reasoning.

Golding and Rosenbloom (1996) propose a general

architecture for integrating rule-based with case-based

reasoning, where the reasoning process is mainly guided

by rules and cases are used before final conclusions are to be

produced. Experimental results based on ANAPRON, an

implementation of the architecture, have demonstrated

the effectiveness of the integration. In the approach

described in Surma and Vanhoof (1995, 1998), the knowl-

edge base contains rules representing standard situations

and cases representing exceptions or non-standard situ-

ations. The contents of the knowledge base are produced

from an initial case base, whose cases are split into two

types: standard cases, used to induce the rules, and

exception cases. The splitting heuristics play an important

role in the accuracy of the approach. IKBALS II is an

approach applied to a legal application domain. Cases

correspond to exceptional situations and are used when rules

run out or prove insufficient in drawing conclusions. The

approach described in Lopes and Jorge (2000a,b) is used for

part-of-speech-tagging (i.e. morpho-syntactic disambigua-

tion). Rules are induced from examples in an iterative

procedure with degrading quality. When the quality of

induced rules falls below a threshold, a case-based approach

is used with the examples not covered by the induced rules.

The case-based reasoning module employs sets of expla-

nations produced from cases through a learning process. In

Park et al. (2000) cases play a supplementary role in the

reasoning process as they deal with details and exceptions to

the rules. Rules handle also uncertainty by adopting the

reliability value, a simplified form of certainty factor. In

SHYSTER-MYCIN (O’Callaghan et al., 2003), a case-

based reasoner, called SHYSTER, is combined with

a modified version of the well-known MYCIN expert

system. Reasoning focuses mainly on the MYCIN part,

calling SHYSTER whenever an ‘open-textured’ term is

encountered.

The balanced approaches category includes approaches

like those used in GREBE (Branting, 1991, 1999),

CABARET (Rissland & Skalak, 1991), DIAL (Bellazi

et al., 1999; Bichindaritz & Sullivan, 1998a,b; Leake,

Kinley, & Wilson, 1996). GREBE achieves a coherent

interleave of rules and cases in order to effectively handle

legal reasoning. At any level of the inference process, it can

invoke the rules or the cases of the system. CABARET is also

an approach dealing with legal reasoning. The rule-based

component and the case-based component act as co-reason-

ers. A controller observes the operation of the whole system

and each co-reasoner separately and decides on how they will

proceed in the reasoning process as a whole and individually.

DIAL (Leake, Kinley, & Wilson, 1996) is a multi-modal

case-based system that incorporates case-based and rule-

based components to facilitate tasks such as adaptation and

similarity assessment. Internally, rule- and case-based

reasoning fall back on each other whenever this is necessary.

The approach described in Bichindaritz & Sullivan (1998a,b)

has been applied to post-transplant patient care. The

inference mechanism integrates closely rules and cases

since pattern matching and case-based retrieval is performed

in parallel and the conflict set may simultaneously contain

rules as well as cases. The approach described in Bellazi et al.

(1999) has been applied to diabetic patient management. The

innovative aspect is the use of cases in order to dynamically

adapt (refine) general parameters of certain rules and thus

improve handling of a new situations.

Finally, the case-dominant category includes

approaches like those in GYMEL (Sabater et al., 1998)

and CAMPER (Marling et al., 1999). GYMEL is a system

for harmonizing melodies. In the integration scheme, cases

play a more important role than rules since rules are

invoked when the cases cannot produce a solution. In this

way, a potentially inadequate set of cases is assisted by

the general knowledge of rules. CAMPER is a nutritional

menu planner built by combining the best features of

independent case-based reasoning and rule-based reason-

ing menu planners, CAMP and PRISM, respectively. In

CAMPER, the case-based reasoning component constructs

acceptable menus satisfying multiple nutrition constraints.

The rule-based component from its part can enhance the

proposed menu.

Our approach can be considered as belonging to the rule-

dominant category. Notice, however, that hybrid rules are

used instead of single rules.

8. Conclusions

In this paper, we present an approach that integrates

symbolic rules, neural networks and cases. To achieve it, we

integrate a kind of hybrid rules, called neurules, with cases.

Neurules integrate symbolic rules with the Adaline neural

unit. In the integration, neurules are used to index cases

representing their exceptions.

In this way, the accuracy of the neurules is improved. On

the other hand, due to neurule-based efficient inference

mechanism, conclusions can be reached more efficiently.

In addition, neurule-based inference can be performed even
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if some of the inputs are unknown. This is not possible in

symbolic rule-based reasoning. Furthermore, an existing

symbolic rule-base with indexed exception cases can be

converted into a neurule-base with corresponding indexed

exception cases. Finally, empirical data can be used as a

knowledge source, which facilitates knowledge acquisition.

Of course, this is not the only way that rules, neural

networks and cases can be combined. In this paper, the

connectionist approach is integrated in the rules part.

Another option would be to integrate a connectionist

approach in the cases part. For example, a neural network

could be used to assess the similarity between the input

and the exception cases, which is an issue for further

research.

Most hybrid intelligent systems implemented in the past

usually integrate two intelligent technologies, e.g. neural

networks and rules, neural networks and fuzzy logic, genetic

algorithms and neural networks, etc. (Medsker, 1995). We

believe that a new development that should receive interest in

the future is the integration of more than two intelligent

technologies that can facilitate the solution of complex

problems and exploit multiple types of available data sources.

Also, we present in this paper a new high-level

categorization of the approaches integrating rule-based

and case-based reasoning. Categorization in lower levels is

an issue for further research.
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