
Using a hybrid rule-based approach in developing an intelligent tutoring

system with knowledge acquisition and update capabilities

Ioannis Hatzilygeroudisa,b,*, Jim Prentzasa,b

aDepartment of Computer Engineering and Informatics, School of Engineering, University of Patras, 26500 Patras, Hellas, Greece
bResearch Academic Computer Technology Institute, P.O. Box 1122, 26110 Patras, Hellas, Greece

Received 14 September 2003; revised 14 September 2003; accepted 28 October 2003

Abstract

In this paper, we present the architecture and describe the functionality of an Intelligent Tutoring System (ITS), which uses an expert

system to make decisions during the teaching process. The expert system uses neurules for knowledge representation of the pedagogical

knowledge. Neurules are a type of hybrid rules integrating symbolic rules with neurocomputing. The expert system consists of three

components: the user modelling unit, the pedagogical unit and the inference system. The pedagogical knowledge is distributed in a number of

neurule bases within the user modelling and the pedagogical unit. Another important component of the ITS, for both its development and

maintenance, is its knowledge management unit, which provides knowledge acquisition and knowledge update capabilities to the system,

that is, offers expert knowledge authoring capabilities to the system.

q 2003 Elsevier Ltd. All rights reserved.

Keywords: Hybrid rule-based systems; Knowledge acquisition; Knowledge revision; Intelligent tutoring systems; Neurocomputing

1. Introduction

Intelligent Tutoring Systems (ITSs) form an advanced

generation of Computer Aided Instruction (CAI) systems

Their key feature is their ability to provide a user-adapted

presentation of the teaching material (Polson & Richardson,

1988). This is accomplished by using Artificial Intelligence

(AI) methods to represent the pedagogical decisions and the

information regarding each student (Angelides & Garcia,

1993; El-Khouly, Far, & Koono, 2000; Georgouli, 2002;

Vassileva, 1997). The emergence of the World Wide Web

increased the usefulness of such systems (Brusilovsky,

Schwarz, & Weber, 1996; Hwang, 1998; Moundridou &

Virvou, 2003; Stern & Woolf, 1998).

In any case, the AI techniques that an ITS employs is a

very significant issue for its development, operation and

maintenance. The gradual advances in AI methods have

been incorporated into ITSs resulting into more effective

systems (Urretavizscaya-Loinaz & Fernandez de Castro,

2002). During the past years, various AI formalisms have

been developed for knowledge representation in knowl-

edge-based systems, such as symbolic rules, conceptual

graphs, fuzzy logic, Bayesian networks, neural networks,

case-based reasoning, etc. Most of them have been used for

knowledge representation in ITSs (Hwang, 2003; Josephina

& Nkambou, 2002; Nkambou, 1997; Shiri, Aimeur, &

Frassen, 1998; Zhendong, 2001). Symbolic rules are

perhaps the most prominent AI formalism used in ITSs

(Simic & Devedzic, 2003; Vassileva, 1997). Hybrid

knowledge representation approaches, integrating two or

more formalisms (e.g. symbolic–symbolic, neuro-symbolic

or neuro-fuzzy representations), have also been developed

in an effort to create improved representations (Medsker,

1995; Nauck, Klawonn, & Kruse, 1997; Sun & Alexandre,

1997). Till now, a few ITSs are based on hybrid formalisms

(Magoulas, Papanikolaou, & Grigoriadou, 2001; Prentzas,

Hatzilygeroudis, & Garofalakis, 2002). However, hybrid

approaches can offer a number of benefits to ITSs not

offered by single ones.

In this paper, we present the architecture and describe the

functionality of a Web-based ITS. The ITS uses an expert

system to make decisions during the teaching process.

Expert knowledge is represented via a type of hybrid rules,

0957-4174/$ - see front matter q 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/j.eswa.2003.10.007

Expert Systems with Applications 26 (2004) 477–492

www.elsevier.com/locate/eswa

* Corresponding author. Address: Department of Computer Engineering

and Informatics, School of Engineering, University of Patras, 26500 Patras,

Hellas, Greece. Tel.: þ30-2610-996937; fax: þ30-2610-960374.

E-mail addresses: ihatz@ceid.upatras.gr, ihatz@cti.gr (I.

Hatzilygeroudis); prentzas@ceid.upatras.gr (J. Prentzas).

http://www.elsevier.com/locate/eswa


which offer a number of benefits, such as time and space

efficiency and reasoning robustness. The ITS also includes a

knowledge management unit (KMU), which provides semi-

automated knowledge acquisition and knowledge update

capabilities.

The paper is organized as follows. Section 2 presents an

overview of the system’s architecture. Section 3 presents the

hybrid knowledge representation formalism. Section 4

presents features of the domain knowledge. In Section 5,

the expert system and its components are described. Section

6 presents the functionality of the system supervisor, the

component that controls the whole tutoring process. In

Section 7, the knowledge management component is

presented. In Section 8, the benefits of using the hybrid

rules are outlined. Finally, Section 9 concludes.

2. System overview

Fig. 1 depicts the basic architecture of the ITS. It consists

of the following components: system supervisor, knowledge

management unit, domain knowledge, user modelling unit,

pedagogical unit and inference system.

The last three components constitute the core of a hybrid

expert system, which is used for decision making during the

teaching process. The expert system employs a hybrid

knowledge representation formalism, called neurules (Hat-

zilygeroudis and Prentzas, 2000). Neurules look like

symbolic (if–then) rules, although more complex. The

neurules of the system are distributed, according to their

functionality, into different neurule bases. More specifi-

cally, there are five neurule bases, two in the user modelling

unit and three in the pedagogical unit. The user modelling

unit deals with the construction and update of the

user (student) models. The pedagogical unit is used to

adapt the lesson plan to the current user model, by making

decisions on the teaching strategy, the teaching concepts

and the teaching material. The inference system applies to

any of the knowledge (neurule) bases to produce corre-

sponding conclusions.

The system supervisor controls the overall function of the

ITS. It interacts with the other components of the ITS

calling the inference system whenever it is necessary.

Furthermore, it plays a user interface role.

The teaching subject of the ITS is ‘Internet Technol-

ogies’, including topics like: ‘Basic aspects of computer

networks’, ‘Internet and its basic services’, ‘WWW’, etc.

So, the domain knowledge component includes information

and material related to the teaching subject.

Finally, the knowledge management unit is concerned

with acquisition and update of the knowledge contained in

the various knowledge bases of the ITS.

Fig. 1. The architecture of the ITS.

I. Hatzilygeroudis, J. Prentzas / Expert Systems with Applications 26 (2004) 477–492478



3. Knowledge representation

Symbolic rules constitute a popular knowledge represen-

tation scheme used in the development of knowledge-based

systems (Gonzalez & Dankel, 1993). Rules exhibit a

number of attractive features such as naturalness, modular-

ity and ease of explanation. They are a typical approach of

symbolic knowledge representation. One of their major

drawbacks is that the interaction with the expert may turn

out to be a bottleneck, causing delays in the system’s overall

development. Another drawback is the inability to draw

conclusions when the value of one or more conditions is

unknown.

During the last years, artificial neural networks have been

quite often used in the development of expert systems.

Neural networks represent a totally different approach to the

problem of knowledge representation known as connection-

ism (Gallant, 1993). Some advantages of neural networks

are their ability to obtain knowledge from empirical data

(reducing the interaction with experts), their high level of

efficiency, their ability to reach conclusions based on

partially known inputs and their ability to represent complex

and imprecise knowledge. A disadvantage of neural

networks is the fact that they lack the naturalness and

modularity of symbolic rules. The knowledge encompassed

in neural networks is in most cases incomprehensible. So,

neural networks are more or less black boxes. Also,

incremental development of a neural base is not possible.

Finally, update of a neural base normally requires retraining

of the whole network.

In our system, we use neurules, a type of hybrid rules

integrating symbolic rules with neurocomputing, for

knowledge representation (Hatzilygeroudis & Prentzas,

2000). The form of a neurule is depicted in Fig. 2a. Each

condition Ci is assigned a number sfi; called its

significance factor. Moreover, each rule itself is assigned

a number sf0; called its bias factor. Internally, each neurule

is considered as an adaline unit (Fig. 2b). The inputs Ci

ði ¼ 1;…; nÞ of the unit are the conditions of the rule. The

weights of the unit are the significance factors of the

neurule and its bias is the bias factor of the neurule. Each

input takes a value from the following set of discrete

values: [1 (true), 0 (false), 0.5 (unknown)]. The output D;

which represents the conclusion (decision) of the rule, is

calculated via the formulas

D ¼ f ðaÞ; a ¼ sf0 þ
Xn

i¼1

sfiCi

where a is the activation value and f ðxÞ the activation

function, which is a threshold function

f ðaÞ ¼
1 if a $ 0

21 otherwise

(

Hence, the output can take one of two values, ‘ 2 1’ and

‘1’, representing failure and success of the rule,

respectively.

The general syntax of a condition Ci and the conclusion

D is

, condition . < ¼ ,variable . , l-predicate .

,value .

, conclusion . < ¼ ,variable . , r-predicate .

,value .

where ,variable . denotes a variable that is a symbol

representing a concept in the domain, e.g. ‘teaching-

method’, ‘mark-level’, etc. , l-predicate . denotes a

symbolic or a numeric predicate. The symbolic predicates

are {is, isnot}, whereas the numeric predicates are

{, , . , ¼ }. , r-predicate . can only be a symbolic

predicate. ,value . denotes a value. It can be a symbol, a

number or a list (see Section 5 for example neurules).

A variable in a condition can be either an input variable

or an intermediate variable, whereas a variable in a

conclusion can be either an intermediate or an output

variable or both. An input variable takes values from the

user (input data), whereas intermediate and output variables

take values through inference, since they represent inter-

mediate and final conclusions, respectively.

Neurules can be produced either from symbolic rules

(Hatzilygeroudis & Prentzas, 2000) or from empirical data

(Hatzilygeroudis & Prentzas, 2001a).

Apart from neurules, facts are used to represent knowl-

edge. A fact has the form of a condition of a neurule and

represents a variable-value pair.

4. Domain knowledge

Domain knowledge contains knowledge related to the

teaching subject (domain) as well as the actual teaching

material. It consists of three parts: (a) knowledge concepts,

(b) course units and (c) meta-description.

Knowledge concepts are the elementary pieces of

knowledge of the specific domain. Every concept has a

number of attributes, such as name, difficulty-level, detail-

level, acceptable-knowledge-level. Knowledge concepts are

organized into concept groups. A concept group containsFig. 2. (a) Form of a neurule (b) corresponding adaline unit.

I. Hatzilygeroudis, J. Prentzas / Expert Systems with Applications 26 (2004) 477–492 479



closely related concepts based on the knowledge they refer

to. Therefore, the domain of the subject is dissected into

sub-domains, such as ‘Computer Networks’ and ‘World

Wide Web’, which are represented as concept groups.

Concept groups may contain a number of concept

subgroups. ‘World Wide Web’, for instance, contains as

subgroups the ‘Web structure’, ‘Web access’ and ‘Web

communication’. Each concept subgroup contains a number

of concepts (see Table 1).

Furthermore, each concept can have ‘prerequisite to’

relationships with other concepts. These relationships

denote its prerequisite concepts. For example, concept

‘HTML’ may have ‘prerequisite to’ relationships with

concepts ‘Hypertext’ and ‘Web page’. These relation-

ships can be viewed as links, so that a number of

concept networks are formed representing the pedagogi-

cal structure of the domain.

Course units constitute the teaching material to be

presented to the users (students) in the form of Web

pages. The teaching material includes a variety of topics,

ranging from introductory to advance. Each course unit is

associated with a knowledge concept. The user is

required to have an acceptable level of knowledge of

the concept’s prerequisite concepts, to be able to start a

learning session concerning the knowledge contained in

the corresponding course unit. In order to achieve a user-

adapted presentation of the teaching material, the system

keeps variants of the same page (course unit) with

different presentations.

Domain knowledge also includes a meta-description of

the course units. The meta-description concerns the

attributes that describe the course units. The main

attributes of a course unit represent its level of difficulty,

its pedagogical type (theory, example, exercise), its

multimedia type (e.g. text, image, animation, interactive

simulation), its detail level, etc. The meta-description of

the course units is based on a part of the ARIADNE

metadata recommendation (http://www.ariadne-eu.org)

and is stored in a relational database.

The separate representation of the domain’s pedagogical

structure (concept networks and units meta-description)

from the actual teaching content (course units) not only

facilitates updates in the domain knowledge, but also

pedagogical decisions (see also Vassileva, 1997).

5. The hybrid expert system

5.1. User modelling unit

The user modelling unit is used to record user-related

information, which is vital for the system’s user-adapted

operation. It contains models of the users of the system and

mechanisms for creating and updating these models (Fig. 3).

A user model consists of four types of items: (i) personal

data, (ii) interaction parameters, (iii) student characteristics

and (iv) concept knowledge.

Personal data concerns information necessary for the

creation and management of the user’s account, like

the user’s name and email. It is used for the identification

of the user.

The interaction parameters represent information

recorded during the interaction of the user with the system.

They represent things like, the type and number of course

units that have been accessed, the concepts and concept

groups the accessed units belong to, the type and amount of

assistance asked, the correct and wrong answers to tests.

Student characteristics refer to the learning abilities and

the preferences of the user. There are a number of student

characteristics, such as multimedia type preference, user

type, concentration level, computer experience. Based on the

way their values are acquired, the student characteristics are

distinguished in askable and inferable. The askable charac-

teristics, such as the multimedia type preference, are given

values directly by the user, whereas the values of

the inferable ones, such as the concentration level, are

inferred by the system, based on the interaction parameters

and the concept knowledge. So, a new user must give values

to the askable student characteristics. However, the user has

the option to change them during a teaching process.

Initialisation of student characteristics is made via

stereotypes (Rich, 1989). The stereotypes represent classes

of typical users. So, each user is assigned one of some

predefined classes (stereotypes). The classification module

contains a neurule base, called the classification base, which

is responsible for selecting the appropriate stereotype for a

user.

The classification base is also used to infer values for the

inferable characteristics during the learning process. The

variables of the conclusions of the classification neurules

Table 1

An example concept group with its concept subgroups and concepts

Concept group Concept subgroups Concepts

World Wide Web Web structure HTML, hypertext, Web page,

Web site, Web browser

Web access HTTP, Web server, IP

address, URL, Web browser

Web communication Discussion forums, usergroups

Fig. 3. The structure of the User Modeling Unit.

I. Hatzilygeroudis, J. Prentzas / Expert Systems with Applications 26 (2004) 477–492480

http://www.ariadne-eu.org


correspond to the inferable characteristics. The variables of

the conditions correspond to the interaction parameters that

the inferable characteristics are based on. For example, the

concentration level is inferred based on the number of

accesses to a concept units and the time spend on them. The

user models are dynamically updated during the learning

sessions.

Concept knowledge is a representation of which concepts

and in what degree the user has already known (or learned).

We use a combination of stereotypes and the overlay model

(see, e.g. in Brusilovsky, 1998) to represent a user’s concept

knowledge. Stereotypes are used for initialisation purposes

via the classification module. Stereotypes give values to

subgroup knowledge level. The overlay model is related to

the concept knowledge level.

The evaluation module evaluates the user’s performance

during a learning session, based on the interaction of the

user with the system, and accordingly updates the user

model. More specifically, based on the interaction par-

ameters, it assigns values to the concepts the user has dealt

with, denoting the knowledge-level of the user about those

concepts. This is done by the evaluation base, a neurule base

contained in the evaluation module.

One of the tasks of the evaluation neurules is to decide

on the mark level a user achieved after having got through

a test. The mark level ranges from ‘low’ to ‘excellent’. The

decision is based on the number of times the user asked for

assistance, the number of related examples requested by

the user and the number of answering attempts made by the

user. The conditions of the neurules contain these

parameters. Table 2 presents an example evaluation

neurule (see Section 8 for the way it was produced).

Mark levels concern concepts. Based on the mark levels of

the concepts, the knowledge levels of the concept

(sub)groups are derived.

5.2. Pedagogical unit

The pedagogical unit concerns the pedagogical decisions

made during a learning session. It provides the knowledge

infrastructure for tailoring the presentation of the teaching

material according to the information contained in the user

model. The pedagogical model consists of three knowledge

bases: (a) method selection base; (b) concept selection base

and (c) unit selection base. Each of these knowledge bases

contains a number of neurules.

The method selection base deals with the selection of the

appropriate teaching method. Selection is based on

parameters concerning the user model and the specific

concept subgroup. Such parameters are the user’s concen-

tration level, knowledge level as well as the percentage of

accessed course units (belonging to the specific concept

subgroup). In addition, the concept subgroup’s default

teaching method is taken into account. These parameters

appear in the conditions of the neurules used to select the

teaching method. There are totally six teaching methods

(see Section 7). For instance, according to one of them, in

order to teach the user a specific concept sub-group, course

units containing theory, examples and exercises should be

involved. Another method states that, the most appropriate

way of teaching would be to present only examples and

exercises. Table 3 presents an example neurule for the

teaching method selection.

The concept selection base is used to select the

appropriate concepts, in order a user-adapted lesson plan

be constructed. The selection is based on the user’s prior

concept knowledge, sub-domain knowledge level, desired

detail level and the concepts’ detail level. More specifically,

for a specific sub-domain, the concepts for which the user’s

knowledge level is unsatisfactory are identified. These

concepts are candidates for participating in the lesson plan.

Concepts whose detail level is incompatible with the user’s

desired detail level are eliminated from the candidate set.

The unit selection base is used to select the course units,

which are suitable for presentation. For this purpose, the

student characteristics of the user model, the selected

teaching method as well as the meta-description of the

course units are taken into account.

5.3. Inference system

The inference system consists of two components: (a) fact

base and (b) inference engine. The fact base contains facts

related to the current user and learning session. Actually, all

necessary information from the user model and domain

knowledge is stored as facts in the fact base.

The interface engine (IE) implements the way neurules

co-operate to reach conclusions. The inference process

gives pre-eminence to symbolic reasoning and is based on a

backward chaining strategy (see, e.g. in Gonzalez & Dankel,

1993). As soon as the initial input data is given, the neurules

related to the final decisions (output neurules) are

considered for evaluation. One of them is selected for

Table 2

An example evaluation neurule

(29.7) if assistance-times is 1 (4.7),

assistance-times is 0 (4.6),

solution-attempts is 2 (4.6),

requested-examples is .1 (3.2),

requested-examples is 1 (1.4)

then mark is average

Table 3

An example neurule for the teaching method selection

(220.2) if concentration-level is low (7.2),

knowledge-level is low (6.4),

accessed-units ,0.25 (5.4),

def-teaching-method is theory-examples-exercises (2.5),

def-teaching-method is examples-exercises (2.4)

then teaching-method is theory-examples-exercises

I. Hatzilygeroudis, J. Prentzas / Expert Systems with Applications 26 (2004) 477–492 481



evaluation. Selection is based on textual order. A rule

succeeds if the output of the corresponding adaline unit is

computed to be ‘1’, i.e its activation value a gets greater

than zero ða . 0Þ; after evaluation of its conditions (inputs).

A condition evaluates to ‘true’, if it matches a fact in the

fact base, which means that there is a fact with the same

variable, predicate and value. A condition evaluates to

‘unknown’, if there is a fact with the same variable,

predicate and ‘unknown’ as its value. A condition cannot be

evaluated if there is no fact in the fact base with the same

variable. If the variable is inferable, however, a neurule with

a conclusion containing that variable is examined. A

condition evaluates to ‘false’, if there is a fact with the

same variable, predicate and different value. Inference stops

either when one or more output neurules are fired (success)

or there is no further action (failure).

To illustrate how a neurule evaluation is made, we

present the following example. Suppose that we have a

knowledge base containing the four neurules of Table 12

(see Section 7.1.3) and a fact base with the following

facts in it: {‘assistance-times is 1’, ‘solution-attempts is

.1’, ‘requested-examples is .1’}. IE starts examining

each one of the rules, to find whether any of them fires

(succeeds). To this end, the activation value a (see

Section 2) of each rule is calculated (recall that the value

of a condition is ‘1’ if it is true and ‘0’ if it is false), as

follows (where terms corresponding to false conditions

are omitted, since they give ‘0’ as a result)

aPN1 ¼ ð20:5Þ þ 1 £ ð23:8Þ þ 1 £ 2:8 þ 1 £ ð20:70Þ

¼ 25:0 þ 2:8 ¼ 0 2 2:2 , 0 ðfailureÞ

aPN2 ¼ ð21:0Þ þ 1 £ ð24:1Þ þ 1 £ ð22:2Þ þ 1 £ ð20:4Þ

¼ 27:7 , 0ðfailureÞ

aPN3 ¼ ð22:6Þ þ 1 £ 4:7 þ 1 £ ð21:0Þ þ 1 £ ð20:2Þ

¼ 23:8 þ 4:7 ¼ 0:9 . 0 ðsuccessÞ

Since PN3 succeeds, the inference process stops and the

conclusion ‘mark-level is average’ is produced and put in

the fact base.

It is important to notice that even if there is no information

in the fact base about a variable’s value, evaluation can

proceed and produce a result. For example, if ‘required-

examples is .1’ is missing from the fact base above,

evaluation proceeds as follows

aPN1 ¼ ð20:5Þ þ 1 £ ð23:8Þ þ 1 £ 2:8 þ 0:5 £ ð20:70Þ

¼ 24:65 þ 2:8 ¼ 22:55 , 0 ðfailureÞ

aPN2 ¼ ð21:0Þ þ 1£ ð24:1Þ þ 0:5£ ð22:2Þ þ 1£ ð20:4Þ

¼26:6 , 0 ðfailureÞ

aPN3 ¼ ð22:6Þ þ 1£ 4:7þ 1£ ð21:0Þ þ 0:5£ ð20:2Þ

¼23:7þ 4:7 ¼ 1:0 . 0 ðsuccessÞ

So, again NR3 succeeds and its conclusion is added to the

fact base. This does not happen with symbolic rules, where

evaluation stops in such cases.

Actually, the inference process is more complicated and

some heuristics are used to make it more efficient not only

than the symbolic rule-based one, but also than other similar

efforts (Hatzilygeroudis & Prentzas, 2001b). For example,

notice that for efficiency reasons the conditions of a neurule

are ordered in an ascending way based on the absolute

values of their significance factors.

6. System supervisor

The system supervisor controls the whole learning

process. Its main objective is to construct a user-adapted

lesson plan and dynamically update it during a learning

session. A learning session concerns a specific concept

group. The learning process consists of the following steps

(i) Select a concept subgroup

(ii) Select and order corresponding concepts

(iii) Select a teaching method

(iv) Select and order corresponding course units

(v) Evaluate user’s performance and update user model

(vi) If knowledge level is not adequate, go to step (iii)

or (iv). Otherwise, go to (i).

Fig. 4 depicts the overall learning process. In each step,

the system supervisor calls the IE to act on the appropriate

neurule base from the pedagogical and the user-modelling

units. The results are put in the fact base and then

propagated to the appropriate knowledge base. The system

supervisor also takes care of ordering the selected concepts

and the course units. Concepts selected via the concept

selection base are ordered, based on the links between them.

For example, concept ‘HTML’ will be put before ‘Hyper-

text’, since it is one of its prerequisites.

Ordering of the course units is primarily based on their

pedagogical type and secondarily on their difficulty level.

Ordering based on the pedagogical type is specified by

Fig. 4. Steps of the learning process.

I. Hatzilygeroudis, J. Prentzas / Expert Systems with Applications 26 (2004) 477–492482



the selected teaching method. Subsequent ordering is based

on the difficulty level.

After the evaluation step, if the user’s knowledge level

about each concept belonging to the initial lesson plan is

greater than or equal to concept’s lowest acceptable

knowledge level, another concept subgroup is selected and

a new learning session ensues. Otherwise, the process goes

back to step (iii) or (iv), causing reselection of the teaching

method and/or course units and re-evaluation. The system

records whether a teaching method has been successful or

unsuccessful for a specific concept.

7. Knowledge management unit

The task of the knowledge management unit (KMU) is

two-fold: (a) to acquire knowledge from various sources

(e.g. experts, empirical data) and (b) to update knowledge

stored in the knowledge bases of the ITS. Therefore, we

distinguish two functional modes of the unit: knowledge

acquisition mode and knowledge update mode. The overall

structure of KMU is illustrated in Fig. 5.

7.1. Knowledge acquisition

In the knowledge acquisition mode, KMU interacts with

an external source of knowledge (e.g. an expert) in order to

elicit expert knowledge and represent it in the knowledge

bases of the ITS. The objective of the knowledge acquisition

mode is to finally produce a set of neurules that represent the

expert knowledge. That knowledge can be acquired from

three types of sources (see Fig. 5): (a) symbolic rules; (b) an

expert and (c) empirical data.

7.1.1. From symbolic rules

In case (a), symbolic rules are converted into neurules via

the rules converting mechanism (RCM). The symbolic rules

may exist from another similar application or may have

been elicited from an expert, in the traditional way (i.e. via

interviews). The rules, before given as an input to RCM,

should be transformed in the following format

if C1;C2;…;Cn then D

where the conditions Ci and the conclusion D have the same

format as those of a neurule and ‘,’ denotes the logical

connective ‘AND’.

The main idea in the RCM algorithm is to merge all

symbolic rules with the same conclusion, called a merger

set, into one neurule, i.e. an adaline neural unit (called the

merger of the rules in the merger set), which, depending on

the input values, will give the appropriate output. To this

end, an initial neurule, having as conditions the conditions

of all the symbolic rules in the merger set and random

initial values for its factors, is produced. Then the truth

table of the combined logical function of the rules is

produced and refined (invalid combinations are elimi-

nated). The refined combined truth table provides the

necessary training knowledge patterns to train the neurule

(i.e. calculate the bias and significance factors). Training is

made via the well-known LMS algorithm. However, due to

possible non-linearity of the patterns, this is not always

feasible (see, e.g. Gallant, 1993). To overcome the

problem, we split the initial merger set into two subsets

and try to produce one neurule for each subset. If it is not

possible for one or both subsets, we further split the non-

linear subset(s) into two other subsets and so on until all

subsets produce one neurule. So, finally more than one

neurule are produced from the initial merger set. The way

Fig. 5. The structure of the Knowledge Management Unit (KMU).

I. Hatzilygeroudis, J. Prentzas / Expert Systems with Applications 26 (2004) 477–492 483



a subset is split is based on some strategy. The RCM

algorithm is presented in detail in Hatzilygeroudis and

Prentzas (2000). In any case, the number of the produced

neurules is significantly less than that of the initial

symbolic rules.

7.1.2. From an expert

In case (b), knowledge is elicited from an expert, via

the knowledge elicitation module (KEM), in the form of

knowledge patterns, which are then converted into

symbolic rules, via the pattern-to-rule conversion

(PRC) process, and finally into neurules, via the RCM

algorithm.

A knowledge pattern relates a number of variables with

a tuple of (their) values. In our case, variables represent

user model characteristics. Each variable can take values

from a set of discrete values. Each pattern has the following

format

½v1; v2;…; vn�

where vi ði ¼ 1; nÞ are values (numeric or symbolic) of the

corresponding variables.

To produce knowledge patterns, dependency information

is needed. Dependency information indicates which of the

variables (intermediate or output variables) depend on

which other variables (input or intermediate variables).

KEM interacts with the expert in order to assist him/her

in creating knowledge patterns. As experienced, eliciting

knowledge patterns from an expert is easier than directly

eliciting symbolic rules.

The elicitation process is outlined below

1. Ask the expert to determine the input, intermediate and

output variables as well as a set of discrete values for

each of them.

2. Ask the expert to supply dependency information

regarding the variables.

3. For each intermediate and output variable x;

3.1. Create and present to the expert all valid combi-

nations ½v1 v2 … vn� of the values of the variables

xi ði ¼ 1; nÞ that x depends on

3.2. For each one of the combinations ask the expert to

give the right value d of x; or mark the combination

as invalid, so that a set p of valid knowledge patterns

of the form ½v1 v2 … vn; d� is created for x:

3.3. For each knowledge pattern in p produce the

corresponding symbolic rule, via the PRC process,

so that a set r of symbolic rules is produced.

3.4. Convert the symbolic rules in r into neurules via the

RCM algorithm.

The production of a symbolic rule from a knowledge

pattern via the PRC process is quite straightforward. If

x1; x2;…; xn are the variables that x depends on and

½v1; v2;…; vn; d� is a knowledge pattern, the produced

symbolic rule is

if x1 is v1;

x2 is v2;

· · ·

xn is vn

then x is d

To illustrate the knowledge acquisition process, we

present as an example the design of a part of the knowledge

bases, related to the method selection base and the

evaluation neurules1.

1. In the first step, the expert (tutor) is asked to determine

the input, intermediate and output variables of the

application with their possible values. In our case the

following are provided

Input variables:

(v1) solution-attempts (1, 2, . 2)

(v2) requested-examples (0, 1, .1)

(v3) assistance-times (0, 1, .1)

(v4) units-percentage (,25%, 25 – 50%, 50 – 75%,

.75%)

(v5) access-times (0, 1, ,4, . 3)

(v6) time-spent (,1, 1–3, 3–5, .5)

(v7) def-teaching-method (theory –example– exercise,

example–theory–exercise, example–exercise, the-

ory, example, exercise)

Intermediate variables:

(v8) knowledge-level (unknown, low, average, high)

(v9) concentration-level (unknown, low, average, high)

(v10) mark-level (low, average, high, excellent)

Output variables:

(v11) teaching-method (theory – example – exercise,

example–theory–exercise, example–exercise, the-

ory, example, exercise)

2. In the second step, the expert is asked to provide

dependency information between input and intermediate as

well as between intermediate and output variables. To this

end, a table is presented and the expert is called to fill in the

dependency information (by inserting an ‘x’ in the

appropriate cell). This information is provided is Table 4.

3. In the third step, for each intermediate and output

variable, a table, containing all combinations of the values

of the variables it depends on, is presented. The expert is

called then to discard invalid combinations and fill in

1 For the sake of simplicity, the examples used in the paper are less

complicated than the real cases.

I. Hatzilygeroudis, J. Prentzas / Expert Systems with Applications 26 (2004) 477–492484



the right value of the (intermediate or output) variable for

each valid combination. This step the intermediate variable

‘mark-level’ (with the last column completed by the

expert) is presented in Table 5 (there are no invalid

combinations).

After that, corresponding symbolic rules are created via

the PRC process. For example, the symbolic rules created

for the rows that have ‘average’ as value for ‘mark-level’

are presented in Table 6. There are eight (8) rules (one for

each row).

These are then transformed into neurules via RCM. The

produced neurules are presented in Table 7. Notice that only

four (4) neurules are produced. Although they may have

more conditions than the symbolic ones, they need notably

less storage space. The produced neurules are equivalent to

the symbolic ones, i.e. the same conclusions are produced

for the same inputs.

There is an alternative elicitation process to the above.

According to that, the knowledge patterns produced after

step 3.2 are not converted into symbolic rules (step 3.3) and

then into neurules (step 3.4), but are converted directly into

neurules, via the DCM algorithm (see Section 7.1.3). This

process is preferable in cases that the produced knowledge

patterns are incomplete, that is they do not cover, for some

reason, all or most of the possible valid combinations of the

variables values (see Section 7.1.3). Thus, if we have a

complete set of knowledge patterns, which usually is the

case when eliciting an expert, we prefer to convert the

produced knowledge patterns first into symbolic rules and

then into neurules, which is called indirect conversion, and

not directly, which is called direct conversion (this is why

the dashed arrow from KEM output to DCM in Fig. 5).

Notice that the conditions of NR1 and NR4 are the same

as those of R1 and R8. This means that {R1} and {R8} were

Table 4

Dependency information given by the expert

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Knowledge-level (v8) x x

Concentration-level (v9) x x

Mark-level (v10) x x x

Teaching-method (v11) x x x

Table 5

Knowledge patterns created by the system and completed by the expert

Knowledge pattern no. Solution-attempts (v1) Requested-examples (v2) Assistance-times (v3) Mark-level (d)

1 1 0 0 Excellent

2 1 0 1 High

3 1 0 .1 High

4 1 1 0 Excellent

5 1 1 1 High

6 1 1 .1 High

7 1 .1 0 High

8 1 .1 1 High

9 1 .1 .1 Average

10 2 0 0 High

11 2 0 1 Average

12 2 0 .1 Average

13 2 1 0 Average

14 2 1 1 Average

15 2 1 .1 Low

16 2 .1 0 Average

17 2 .1 1 Average

18 2 .1 .1 Low

19 .2 0 0 Average

20 .2 0 1 Low

21 .2 0 .1 Low

22 .2 1 0 Low

23 .2 1 1 Low

24 .2 1 .1 Low

25 .2 .1 0 Low

26 .2 .1 1 Low

27 .2 .1 .1 Low

I. Hatzilygeroudis, J. Prentzas / Expert Systems with Applications 26 (2004) 477–492 485



the merger subsets of NR1 and NR4, respectively. That is,

they are actually transformations of individual symbolic

rules into neurules. In contrast, NR2 is a merger of {R4, R6}

as well as NR3 is a merger of {R2, R3, R5, R7}.

7.1.3. From empirical data

Finally, in case (c), empirical data is provided to the

system (e.g. stored in a file) and converted into symbolic

rules via the data converting mechanism (DCM). This may

require dependency information between the variables that

represent the empirical data, which is given by an expert.

Empirical data is data recorded from real cases that have

been verified by objective means. Often, empirical data is

extracted from observations (as in most pedagogical cases)

and verified by a team of experts. Empirical data consists of

a set of knowledge patterns in the form ½v1; v2;…; vn�:

Based on dependency information, as many sets of

knowledge patterns as the intermediate and the output

variables are extracted from the initial set of patterns. Each

pattern now has the form

½v1; v2;…; vm; d�

where d is the value of the corresponding intermediate or

output variable and vi ði ¼ 1…m;m # nÞ are values of the

variables it depends on.

The acquisition algorithm can be outlined as follows

1. Ask the user to provide the source (e.g. a file) of the

empirical data (i.e. variable names and knowledge

patterns).

2. Ask the user to provide corresponding dependency

information.

3. Based on the dependency information, produce the

necessary data subsets.

4. For each data subset, produce the corresponding

neurules via the DCM.

The DCM algorithm is presented in detail in (Hatzily-

geroudis and Prentzas, 2001a). The main objective of the

algorithm is to create one neurule for each data subset.

However, due to possible non-linearity of the knowledge

patterns of the subset, this is not always feasible. If this is the

case, we split the initial subset into two other subsets and try

to produce one neurule for each of the new subsets. If it is

not possible, we split the non-linear set(s) into two other

subsets and so on until all subsets produce one neurule. So,

finally more than one neurule are produced. Some strategy is

used in splitting a set into subsets.

For example, consider the empirical data set2 (Table 8)

introduced in the system by the user (step 1) and

corresponding dependency information (step 2) shown in

Table 9.

Dependency information shows that ‘mark-level’ and

‘knowledge-level’ are inferable variables, that is, their

values depend on the values of other variables. More

specifically, ‘mark-level’ can be considered as an inter-

mediate variable, whereas ‘knowledge-level’ as an output

variable.

Then, the empirical data subsets presented in Tables 10

and 11 are produced (step 3). Table 10 is related to the

intermediate variable ‘mark-level’ (notice that the knowl-

edge patterns are the same as patterns No. 2, 7, 9, 11, 13, 14,

18, 19, 20 and 24 of Table 5), whereas Table 11 to the output

variable ‘knowledge-level’.

In Table 12, the neurules produced from the ‘mark-level’

data subset (via the main DCM algorithm) are presented

(step 4). Notice that two neurules are produced for the

knowledge patterns related to ‘average’ value, whereas only

one for each of ‘high’ and ‘low’ values. This means that the

patterns related to ‘average’ value constitute a non-linear

set, thus could not be covered by only one neurule (adaline

unit).

There is an alternative acquisition process to the above.

According to that, the knowledge patterns in the data subsets

produced after step 3 are not converted directly into

neurules (step 4), but they are first converted to symbolic

rules via the PRC component and then to neurules via RCM,

that is indirect conversion is used instead of direct. This

process is preferable in cases that the produced knowledge

patterns are complete, that is they cover all or most of the

possible valid combinations of the values of the variables of

the knowledge patterns.

This is due to the following fact. Experiments have

shown that conversion of symbolic rules, representing

Table 6

Symbolic rules for the ‘average’ knowledge patterns

R1 R5

if solution-attempts is 1, if solution-attempts is 2,

requested-examples is .1, requested-examples is 1,

assistance-times is .1 assistance-times is 1

then mark is average then mark is average

R2 R6

if solution-attempts is 2, if solution-attempts is 2,

requested-examples is 0, requested-examples is .1,

assistance-times is 1 assistance-times is 0

then mark is average then mark is average

R3 R7

if solution-attempts is 2, if solution-attempts is 2,

requested-examples is 0, requested-examples is .1,

assistance-times is .1 assistance-times is 1

then mark is average then mark is average

R4 R8

if solution-attempts is 2, if solution-attempts is .2,

requested-examples is 1, requested-examples is 0,

assistance-times is 0 assistance-times is 0

then mark is average then mark is average

2 Since there are no available real empirical data for this case and for

reasons that will become clear later, we use an artificially produced data set,

based on the patterns in Table 5.

I. Hatzilygeroudis, J. Prentzas / Expert Systems with Applications 26 (2004) 477–492486



a number of knowledge patterns, into neurules, in the above

case, produces a smaller knowledge base (less neurules with

less conditions) than the conversion of the same knowledge

patterns directly into neurules. However, direct conversion

produces neurules with generalisation capabilities, whereas

indirect one produces neurules that actually have no

generalisation capabilities. This means that neurules from

direct conversion may produce the right result even if input

values belong to unknown knowledge patterns, that is

patterns not used for their production (training). Thus, if we

have an incomplete set of knowledge patterns, which is

usually the case with empirical data, we prefer to convert the

given knowledge patterns directly into neurules and not

indirectly (this is why the dashed arrow to PRC in Fig. 5).

To illustrate this, let’s convert the knowledge patterns of

the data subset of Table 10 into symbolic rules (via PRC)

and then into neurules (via RCM). The produced neurules

are presented in Table 13.

Notice that (a) the neurules of Table 13 are more than

those in Table 123 and (b) if values of ‘unknown’

knowledge patterns come as inputs to the neurules, they

do not produce any right result. For example, if we consider

the complete set of patterns (Table 5), the neurules of Table

13 do not correctly classify (i.e. produce a correct result for)

any of the patterns that do not belong to the subset

corresponding to Table 10. However, the neurules of Table

12 can correctly classify patterns No. 3, 5, 8, 15, 21, 23, 26,

27 (that is eight out of 16 ‘uknown’ patterns).

7.2. Knowledge update

In the knowledge update mode, KMU deals with

knowledge refinements or changes to the knowledge bases

Table 9

Dependency information for the empirical data set of Table 8

Solution-attempts Requested-examples Assistance-times Units-percentage Mark-level

Mark-level x x x

Knowledge-level x x

Table 7

Neurules produced from the symbolic rules of Table 6

NR1 NR3

(25.6) if solution-attempts is 1 (2.8), (213.6) if solution-attempts is 2 (8.2),

requested-examples is .1 (1.5), assistance-times is 1 (5.0),

assistance-times is .1 (1.4) requested-examples is 0 (4.4),

then mark is average requested-examples is 1 (1.6),

assistance-times is .1 (1.2),

requested-examples is .1 (0.9)

then mark is average

NR2 NR4

(212.9) if solution-attempts is 2 (6.5), (26.1) if solution-attempts is .2 (5.0),

requested-examples is 0 (5.0), assistance-times is 0 (1.1),

assistance-times is 1 (4.6) requested-examples is 0 (1.0)

assistance-times is .1 (2.8) then mark is average

then mark is average

Table 8

Empirical data set

Solution-attempts Requested-examples Assistance-times Units-percentage Mark-level Knowledge-level

1 0 1 .0.75 High High

2 1 1 ,0.25 Average Low

1 .1 0 ,0.50 High Average

2 0 1 .0.75 Average High

.2 1 .1 ,0.25 Low Low

1 .1 .1 ,0.50 Average Average

.2 0 1 ,0.50 Low Low

2 1 0 ,0.50 Average Average

2 .1 .1 ,0.25 Low Low

.2 0 0 ,0.50 Average Average

3 This happens because the data subset is incomplete, otherwise they

would be less. Notice, however, that even now the overall conditions of the

symbolic rules in Table 13 are less than those of the neurules in Table 12.

I. Hatzilygeroudis, J. Prentzas / Expert Systems with Applications 26 (2004) 477–492 487



of the ITS. Knowledge update refers to knowledge

refinements or changes either during the last steps in the

construction stage or during the operation and maintenance

stage. Most knowledge updates usually take place during

the construction stage, when the system prototype is

implemented and tested. This happens because, e.g. the

knowledge about teaching methods or student evaluation

methods is rather difficult to be acquired and represented in

a computer-based system and many refinements are

required. Also, the operation of the system and the

consequent feedback from users can also spark off changes

to the knowledge.

In contrast to other hybrid approaches (like, e.g. the one

used in Magoulas, Papanikolaou, & Grigoriadou, 2001),

neurules offer methods for easy knowledge update.

The objective of the methods is to make the required

changes with as little reconstruction (retraining) of a

knowledge base as possible. This is achieved thanks to the

modular nature of neurules and the ideas used in the

methods. Recall that a neurule base is constructed from

either a set of symbolic rules or a set of knowledge patterns.

We call either set the source knowledge of a neurule base.

For example, the symbolic rules of Table 6 constitute the

source knowledge of the neurule base of Table 7. Also, the

knowledge patterns of Table 10 is the source knowledge of

the neurule base of Table 12.

There are methods for both types of source knowledge.

However, to apply the methods, source knowledge should

be stored in the system (see Fig. 5). Based on the type of

source knowledge, we distinguish two modes of knowledge

update: (a) the rule-based update mode, when source

knowledge is actually a set of symbolic rules, and (b) the

pattern-based update mode, when source knowledge is a set

of knowledge patterns.

7.2.1. Rule-based update

The rule-based update mode concerns knowledge

acquired from (a) existing symbolic rules; (b) an expert

Table 10

Mark-level data subset

Solution-attempts Requested-examples Assistance-times Mark-level

1 0 1 High

2 1 1 Average

1 .1 0 High

2 0 1 Average

.2 1 .1 Low

1 .1 .1 Average

.2 0 1 Low

2 1 0 Average

2 .1 .1 Low

.2 0 0 Average

Table 11

Knowledge-level data subset

Units-percentage Mark-level Knowledge-level

.0.75 High High

,0.25 Average Low

,0.50 High Average

.0.75 Average High

,0.25 Low Low

,0.50 Average Average

,0.50 Low Low

,0.50 Average Average

,0.25 Low Low

,0.50 Average Average

Table 12

Neurules directly produced from the knowledge patterns of Table 10

PN1 PN3

(20.5) if assistance-times is 0 (24.6), (22.6) if solution-attempts is 2 (26.2),

solution-attempts is 1 (23.8), requested-examples is 1 (26.0),

solution-attempts is .2 (3.0), assistance-times is 1 (25.7),

assistance-times is .1 (2.8), assistance-times is .1 (4.7),

requested-examples is 0 (22.0), requested-examples is 0 (3.2),

requested-examples is 1 (0.90), assistance-times is 0 (22.7),

requested-examples is .1 (20.70), solution-attempts is .2 (2.6),

solution-attempts is 2 (20.30), solution-attempts is 1 (21.0),

assistance-times is 1 (20.30) requested-examples is .1 (20.2)

then mark-level is low then mark-level is average

PN2 PN4

(21.0) if assistance-times is .1 (24.1), (20.8) if solution-attempts is 1 (3.2),

solution-attempts is .2 (22.8), assistance-times is .1 (22.7),

requested-examples is .1 (22.2), solution-attempts is 2 (22.6),

assistance-times is 1 (1.6), requested-examples is 1 (22.6),

requested-examples is 1 (1.5), solution-attempts is .2 (22.5),

solution-attempts is 2 (1.3), requested-examples is 0 (1.4),

assistance-times is 0 (1.3), assistance-times is 1 (1.0),

requested-examples is 0 (20.6), requested-examples is .1 (20.7),

solution-attempts is 1 (20.4) assistance-times is 0 (20.3)

then mark-level is average then mark-level is high

I. Hatzilygeroudis, J. Prentzas / Expert Systems with Applications 26 (2004) 477–492488



(indirect conversion case) and (c) empirical data (indirect

conversion case).

The updates, in this mode, should satisfy the following

requirements: (a) enhance source knowledge with a new

symbolic rule, (b) modify an existing symbolic rule in

source knowledge and (c) remove an existing symbolic rule

from source knowledge (because, e.g. it is experienced to be

invalid). There are two algorithms to satisfy the above

requirements: (a) the rule insertion algorithm, for inserting

a new rule, and (b) the rule removal algorithm, for removing

an existing rule. Modification of a rule results from the

combination of removing the existing rule and inserting the

new one (i.e. the modified).

The main idea of the rule insertion algorithm is to find the

smallest merger (sub)set the rule to be inserted is closer to.

The ‘closeness’ of the rule basically depends on the number

of common conditions of the rule and the rules in the merger

(sub)set. When it is found, the neurules produced from the

(sub)set are removed from the current knowledge base, the

rule is inserted into the merger (sub)set and the new (sub)set

is transformed into neurules, via the RCM, which are then

inserted into the knowledge base.

The main idea of the rule removal algorithm is to find the

merger (sub)set the rule to be removed belongs to. When it

is found, the neurules produced from the (sub)set are

removed from the current knowledge base, the rule is

removed from the merger (sub)set and the new (sub)set is

transformed into neurules, via the RCM, which are then

inserted into the knowledge base.

To achieve their objectives, both algorithms use a tree

structure, called the ‘splitting tree’, which stores

information related to merger set splitting (this information

is stored in the corresponding source knowledge com-

ponents). Both algorithms are presented in detail in

(Prentzas & Hatzilygeroudis, 2002).

The rule update module (RUM) implements those

algorithms and interacts with RCM and the corresponding

knowledge base and source knowledge to achieve knowl-

edge update. It accepts as input a symbolic rule and results

in changes to the corresponding knowledge base. The rule-

based update process is as follows

1. Ask the user to specify the type of update action

(insertion, removal)

2. Ask the user to provide the knowledge item related to the

update

3. If it is a knowledge pattern, convert it into a symbolic

rule via RCM

4. Apply the rule insertion or rule removal algorithm,

according to the user choice in step 1.

For example, if symbolic rule R8 is to be removed from

the source knowledge of Table 6, the only neurule that is

affected is NR4, because its merger subset is {R8}. So, NR4

is just removed. If rule R7 is to be removed, NR3 is affected,

since its merger subset is {R2, R3, R5, R7}. Then, NR3

is removed from the neurule base, R7 is removed from

the merger subset and the remaining set ({R2, R3, R5}) is

used to produce its corresponding neurule, which is

presented in Table 14.

Suppose now, for the sake of simplicity, that the old rule

R7 is to be added to the neurule base. Again, only neurule

Table 13

Neurules indirectly produced from the knowledge patterns of Table 10

SN1 SN5

(26.1) if solution-attempts is 1 (4.4), (26.1) if solution-attempts is 1 (5.0),

requested-examples is 0 (1.5), assistance-times is .1 (1.1),

assistance-times is 1 (1.0) requested-examples is .1 (1.0)

then mark-level is high then mark-level is average

SN2 SN6

(25.6) if solution-attempts is 1 (2.8), (29.8) if solution-attempts is .2 (4.9),

requested-examples is .1 (1.5), requested-examples is 1 (3.2),

assistance-times is 0 (1.4) assistance-times is .1 (2.6)

then mark-level is high then mark-level is low

SN3 SN7

(213.2) if solution-attempts is .2 (6.9), (26.3) if solution-attempts is .2 (4.8),

requested-examples is 0 (5.0), requested-examples is 0 (1.3),

assistance-times is 0 (3.1) assistance-times is 1 (1.2)

then mark-level is average then mark-level is low

SN4 SN8

(211.7) if solution-attempts is 2 (6.9), (29.6) if solution-attempts is 2 (4.9),

assistance-times is 1 (4.a6), requested-examples is .1 (4.4),

requested-examples is 1 (2.9), assistance-times is .1 (1.3)

assistance-times is 0 (2.8), then mark-level is low

requested-examples is 0 (1.4)

then mark-level is average

I. Hatzilygeroudis, J. Prentzas / Expert Systems with Applications 26 (2004) 477–492 489



NR3 is affected, because R7 is closer to its merger subset.

R7 is inserted into the source knowledge and the merger

subset, NR3 is removed from the neurule base and a new

neurule is produced from the new merger subset (actually

NR3 in Table 6) and added to the neurule base.

7.2.2. Pattern-based update

The pattern-based update mode deals with knowledge

acquired from (a) empirical data (direct conversion case)

and (b) an expert (direct conversion case).

In this mode, a basic requirement to be satisfied is the

enhancement of source knowledge with a new knowledge

pattern. Removal of a knowledge pattern is not an actual

need for case (a), since empirical data is always verified. It

could be for case (b). However, case (b) is not a usual case.

On the other hand, a method to avoid reconstruction of all

the relevant neurules, in the case of a pattern removal, seems

to be technically difficult and a matter of further research.

So, there is one algorithm to satisfy the above

requirement, the pattern insertion algorithm, for inserting

a new pattern.

The main idea of the pattern insertion algorithm is to find

the data (sub)set the pattern to be inserted is closer

to. The ‘closeness’ of the pattern basically depends on the

number of common values of the pattern and the patterns in

the subset. When it is found, the neurules produced from

the subset are removed from the current knowledge base, the

pattern is inserted into the subset and the new subset is

transformed into neurules, via DCM, which are then inserted

into the knowledge base.

Again, the structure of ‘splitting tree’ is used, to achieve

as little reconstruction of the neurules as possible. The

algorithm is presented in detail in Prentzas, Hatzilygeroudis,

& Tsakalidis (2002)).

The data update module (DUM) implements the above

algorithm and interacts with DCM and the corresponding

knowledge base to achieve knowledge update. It accepts as

input a knowledge pattern and results in changes to the

corresponding knowledge base. The pattern-based update

process is as follows

1. Ask the user to provide the knowledge pattern

2. Apply the pattern insertion algorithm.

For example, suppose that the new knowledge pattern

[2, 0, .1, average] is to be added to the source knowledge

of Table 10. Then, neurule PN3 in Table 12 is only affected,

because the new pattern is closer to its pattern subset

({[1, .1, .1, average], [.2, 0, 0, average]}). So, the new

pattern is added to the source knowledge and the pattern

subset, PN3 is removed and a new neurule (presented in

Table 15) is produced and added to the neurule base.

8. Benefits of using neurules

The use of neurules to represent knowledge in the ITS

has revealed a number of benefits that they can offer to the

construction of an ITS as well as its operation and

maintenance More specifically:

(a) Neurules support incremental development of neur-

ule-bases, because they retain the naturalness and

modularity of symbolic rules. One can easily add new

neurules or remove old neurules from a neurule base

without making any other changes to it, given that

they do not affect existing knowledge, because

neurules are functionally independent units. This is

difficult for other hybrid approaches.

(b) Neurules can be acquired in a semi-automated way

from various sources, such as symbolic rules,

empirical data or an expert, thus enabling exploita-

tion of alternative knowledge sources. So, non-

availability of a specific knowledge source (e.g.

experts) can be overcome. This is very important for

ITSs, because knowledge acquisition for them is

harder than for conventional expert systems, due to

the existence of more than one knowledge-based

modules.

(c) Neurules are space-efficient. As it is proved from the

examples in this paper and elsewhere (Hatzilyger-

oudis and Prentzas, 2000), neurules produce quite

smaller knowledge bases compared to classical

symbolic rules. The size reduction in the ITS is

35–40%.

(d) Neurule bases can be easily updated, i.e. without

thorough reconstruction of them. This is quite helpful

during both the construction and maintenance stage.

Due to the nature of an ITS, many knowledge base

Table 14

Revised neurule NR3

NR3

(217.2) if solution-attempts is 2 (10.0),

assistance-times is 1 (6.8),

requested-examples is 0 (6.2),

assistance-times is .1 (3.0),

requested-examples is 1 (1.6)

then mark is average

Table 15

Revised neurule PN3

PN3

(20.8) if assistance-times is 1 (25.7),

requested-examples is 0 (5.0),

solution-attempts is 2 (24.4),

requested-examples is 1 (24.2),

assistance-times is .1 (2.9),

requested-examples is .1 (22.0),

assistance-times is 0 (0.9),

solution-attempts is 1 (0.8),

solution-attempts is .2 (0.8)

then mark-level is average

I. Hatzilygeroudis, J. Prentzas / Expert Systems with Applications 26 (2004) 477–492490



updates are required during the construction stage,

when the system prototype is tested. Also, after

thoroughly checking the effectiveness of the system

by its interactions with end-users, further changes

and updates of the incorporated expert knowledge

may be required. Knowledge base updates constitute

a bottleneck for other hybrid approaches, such as

neuro-fuzzy ones.

(e) Neurules can make robust inferences. In contrast to

symbolic rules, neurules can derive conclusions from

partially known inputs. This is due to the fact that

neurules integrate a connectionist component (ada-

line). This feature is useful, because, during a

teaching session, certain parameters related to the

user may be unknown.

(f) Neurules provide a time-efficient inference engine.

This means that they require fewer computations

compared to classical symbolic rules and even to

other hybrid approaches in order to derive the same

conclusions (Hatzilygeroudis and Prentzas, 2000,

2001b). This is very important, since an ITS is a

highly interactive knowledge-based system requiring

time-efficient responses to users’ actions. Further-

more, the Web imposes additional time constraints.

9. Conclusions and future work

In this paper, we present the architecture and describe the

functionality of a Web-based ITS, which uses a hybrid rule-

based formalism, namely neurules, for knowledge represen-

tation. The system’s pedagogical decisions are made by an

expert system using neurules as knowledge representation

formalism and its corresponding inference mechanism.

The use of neurules instead of symbolic rules or other

hybrid neuro-symbolic approaches offers a number of

advantages. Neurules are space and time efficient and offer

a robust inference mechanism. Additionally, neurule bases

can be incrementally constructed and easily updated. Finally,

alternative available knowledge sources can be exploited for

acquiring knowledge in a semi-automated way.

These last benefits give the ITS knowledge authoring

capabilities. ITSs are systems that need these capabilities,

because pedagogical knowledge is not static, but dynamic

and changes are quite often required.

The use of hybrid approaches in ITSs is likely to gain

interest in the following years. However, neurules have two

weak points. First, they cannot represent fuzziness, which is

necessary in some cases, e.g. for representing user model

knowledge. To remedy this weakness, capabilities for fuzzy

representation should be incorporated into neurules, which

is one of our current efforts. Second, neurules cannot

represent structural knowledge, like the one needed in

domain knowledge. This kind of knowledge can be easily

represented by other representation formalisms, such as

semantic nets or conceptual graphs. Therefore, it seems that

a multi-paradigm environment would be adequate for all

knowledge representation requirements of an ITS.

References

Angelides, M., & Garcia, I. (1993). Towards an intelligent knowledge

based tutoring system for foreign language learning. Journal of

Computing and Information Technology, 1, 15–28.

Brusilovsky, P. (1998). Methods and techniques of adaptive hypermedia. In

P. Brusilovsky, A. Kobsa, & J. Vassileva (Eds.), Adaptive hypertext and

hypermedia. Dordrecht: Kluwer Academic Publishers.

Brusilovsky, P., Schwarz, E., & Weber, G. (1996). ELM-ART: An

intelligent tutoring system on World Wide Web. In C. Frasson, G.

Gauthier, & A. Lesgold (Eds.), Third International Conference on

Intelligent Tutoring System-ITS 1996 (Vol. 1086) (pp. 261–269). LNCS,

Berlin: Springer.

El-Khouly, M. M., Far, B. H., & Koono, Z. (2000). Expert tutoring system

for teaching computer programming languages. Expert Systems with

Applications, 18, 27–32.

Gallant, S. I. (1993). Neural network learning and expert systems.

Cambridge, MA: MIT Press.

Georgouli, K. (2002). The Design of a motivating intelligent assessment

system. In S. A. Cerri, G. Gouarderes, & F. Paraguacu (Eds.), Sixth

International Conference, ITS-2002 (Vol. 2363) (pp. 261–269). LNCS,

Berlin: Springer.

Gonzalez, A. J., & Dankel, D. D. (1993). The engineering of knowledge-

based systems, theory and practice. Englewood Cliffs, NJ: Prentice

Hall.

Hatzilygeroudis, I., & Prentzas, J. (2000). Neurules: improving the

performance of symbolic rules. International Journal on Artificial

Intelligence Tools, 9, 113–130.

Hatzilygeroudis, I., & Prentzas, J. (2001a). Constructing modular hybrid

knowledge bases for expert systems. International Journal on Artificial

Intelligence Tools, 10, 87–105.

Hatzilygeroudis, I., & Prentzas, J. (2001b). An efficient hybrid rule based

inference engine with explanation capability. Proceedings of the 14th

International FLAIRS Conference, Menlo Park, CA: AAAI Press, (pp.

227–231).

Hwang, G.-J. (1998). A tutoring strategy supporting system for distance

learning on computer networks. IEEE Transactions on Education, 41,

343–361.

Hwang, G.-J. (2003). A conceptual map model for developing intelligent

tutoring systems. Computers and Education, 40, 217–235.

Josephina, M. P., & Nkambou, R. (2002). Hierarchical representation and

evaluation of the student in an intelligent tutoring system. In A. S. Cerri,

G. Gouarderes, & F. Paraguacu (Eds.), Proceedings of the Sixth

International Conference on Intelligent Tutoring Systems—ITS 2002

(Vol. 2363) (pp. 708–717). LNCS, Berlin: Springer.

Magoulas, G. D., Papanikolaou, K. A., & Grigoriadou, M. (2001). Neuro-

fuzzy synergism for planning the content in a web-based course.

Informatica, 25, 39–48.

Medsker, L. R. (1995). Hybrid intelligent systems. Dordrecht: Kluwer

Academic Publishers.

Moundridou, M., & Virvou, M. (2003). Analysis and design of a Web-

based authoring tool generating intelligent tutoring systems. Computers

and Education, 40, 157–181.

Nauck, D., Klawonn, F., & Kruse, R. (1997). Foundations of neuro-fuzzy

systems. New York: Wiley.

Nkambou, R. (1997). Using fuzzy logic in its-course generation.

Proceedings of the Ninth IEEE International Conference on Tools

with Artificial Intelligence, Silver Spring, MD: IEEE Computer Society,

(pp. 190–193).

Polson, M. C., & Richardson, J. J. (1988). Foundations of intelligent

tutoring systems. London: Lawrence Erlbaum.

I. Hatzilygeroudis, J. Prentzas / Expert Systems with Applications 26 (2004) 477–492 491



Prentzas, J., & Hatzilygeroudis, I. (2002). Updating a hybrid rule base with

changes to its symbolic source knowledge. Proceedings of the ECAI-

2002, Lyon, France, Amsterdam: IOS Press, (pp. 250–254).

Prentzas, J., Hatzilygeroudis, I., & Garofalakis, J. (2002). A web-based

intelligent tutoring system using hybrid rules as its representational

basis. In S. A. Cerri, & G. Gouarderes (Eds.), Sixth International

Conference, ITS-2002 (Vol. 2363). LNCS, Berlin: Springer.

Prentzas, J., Hatzilygeroudis, I., & Tsakalidis, A. (2002). Updating a hybrid

rule base with new empirical source knowledge. Proceedings of the 14th

IEEE International Conference on AI Tools (ICTAI-02), Washington,

DC, USA, Silver Spring, MD: IEEE Computer Society Press.

Rich, E. (1989). Stereotypes and user modelling. In A. Kobsa, & W. Wahlster

(Eds.), User models in dialog systems (pp. 35–51). Berlin: Springer.

Shiri, M. E., Aimeur, E., & Frassen, C. (1998). Modeling by case-based

reasoning. In B. P. Goettl, H. M. Halff, C. L. Redfield, & V. J. Shute

(Eds.), Fourth International Conference on Intelligent Tutoring

Systems-ITS 1998 (Vol. 1452) (pp. 394–404). LNCS, Berlin: Springer.

Simic, G., & Devedzic, V. (2003). Building an intelligent system using

modern Internet technologies. Expert Systems with Applications, 25,

231–246.

Stern, M., & Woolf, B. (1998). Curriculum sequencing in a web-based

tutor. In B. P. Goettl, H. M. Halff, C. L. Redfield, & V. J. Shute (Eds.),

Fourth International Conference on Intelligent Tutoring Systems (Vol.

1452). LNCS, Berlin: Springer.

Sun, R., & Alexandre, E. (Eds.), (1997). Connectionist-symbolic inte-

gration: From unified to hybrid approaches. London: Lawrence

Erlbaum.

Urretavizcaya-Loinaz, M., & Fernandez de Castro, I. (2002). Artificial

intelligence and education: an overview. Upgrade, III, (5), 53–58.

Vassileva, J. (1997). Dynamic courseware generation. Journal of Comput-

ing and Information Technology, 5, 87–102.

Zhendong, V. K. (2001). Bayesian student modelling, user interfaces and

feedback: a sensitivity analysis. International Journal of Artificial

Intelligence in Education, 12(2), 155–184.

I. Hatzilygeroudis, J. Prentzas / Expert Systems with Applications 26 (2004) 477–492492


	Using a hybrid rule-based approach in developing an intelligent tutoring system with knowledge acquisition and update capabilit
	Introduction
	System overview
	Knowledge representation
	Domain knowledge
	The hybrid expert system
	User modelling unit
	Pedagogical unit
	Inference system

	System supervisor
	Knowledge management unit
	Knowledge acquisition
	Knowledge update

	Benefits of using neurules
	Conclusions and future work
	References


