

Published in the Proceedings of the 8th Panhellenic Conference on Informatics,
Nicosia, Cyprus (November 2001) Vol.1 422-431

HYMES: A HYbrid Modular Expert System

with Efficient Inference and Explanation

Ioannis Hatzilygeroudis and Jim Prentzas∗

University of Patras, School of Engineering
Dept of Computer Engin. & Informatics, 26500 Patras, Hellas (Greece)

&
Computer Technology Institute, P.O. Box 1122, 26110 Patras, Hellas (Greece)

E-mails: ihatz@cti.gr, ihatz@ceid.upatras.gr, prentzas@ceid.upatras.gr
Phone: +30-61-960321, Fax: +30-61-960322

URL: http://mmlab.ceid.upatras.gr/aigroup/ihatz/

Abstract
A HYbrid Modular Expert System, called HYMES, is presented. HYMES provides a
dual representation scheme: a symbolic one, based on conventional symbolic rules, and
a hybrid one, based on neurules, a kind of rules that combine a symbolic and a
connectionist representation. Symbolic rules are internally converted into neurules, for
efficiency reasons. In this way, hybrid modular knowledge bases can be constructed.
Also, both representation schemes share a common inference engine. The inference
engine is based on a connectionist technique, which is proved to be quite efficient.
Furthermore, HYMES possesses an efficient and natural explanation mechanism.

1. Introduction

Constructing conventional expert systems greatly depends on the availability of experts
and their ability to make explicit their way of reasoning, which is a hard task. So, knowledge
acquisition from experts is usually referred to as a bottleneck (Medsker 1994). On the other
hand, constructing a neural network mostly depends on the availability of empirical data
(examples). This makes construction of neural networks easy. Additionally, neural networks
are very efficient in computing their outputs. However, they lack explanation capabilities, in
contrast to expert systems, especially the rule-based ones. This makes them look like black
boxes, unnatural and not understandable.

Therefore, there have been efforts at combining expert systems and neural networks into
hybrid systems, in order to exploit their benefits. In some of them, called embedded systems,
a neural network is used as the inference engine of an expert system. For example, in
NEULA (Tirri 1991, Tirri 1995) a neural network selects the next rule to fire. Similarly,
SETHEO (Letz et al 1992) uses a neural network to select the most promising node at each
inference step in its theorem proving process. Also, LAM (Medsker 1994) uses two neural
networks as partial problem solvers. However, those systems exploit only the efficiency of
neural networks, leaving out aspects such as explanation, naturalness and modularity.

∗ Research partially supported by GSRT of Greece, Project No Ε∆234, Program ΠΕΝΕ∆’99.

On the other hand, connectionist expert systems are integrated systems that represent
relationships between concepts, considered as nodes in a neural network. Weights are set in a
way that makes the network infer correctly. MACIE (Gallant 1988, Gallant 1993) is such a
system. Two characteristics of MACIE are: its ability to reason from partial data and its
ability to provide explanations in the form of if-then rules. To improve performance of
connectionist expert systems, the “recency inference engine” is introduced in (Ghalwash
1998). In order to assess its performance, the ‘convergence rate’ is used, which is based on
the number of known and necessary (required) inputs. However, this does not take into
account the number of internal computations, which for large networks may be of
importance.

A weak point of connectionist expert systems is that they absolutely rely on empirical
data. So, they are useless in cases where such data is not available. That is, their
“hybridness” invalidates the symbolic component representation scheme.

In this paper, we present HYMES, a Hybrid Modular Expert System tool for constructing
expert systems. HYMES provides two separate, although closely related, representation
schemes, a symbolic and a neurosymbolic. The symbolic representation scheme is based on
symbolic, if-then rules, whereas the neurosymbolic one on neurules (Hatzilygeroudis and
Prentzas 2000a, Hatzilygeroudis and Prentzas 2000b), a hybrid rule-based representation
scheme. However, symbolic rules are converted into neurules, so that a common inference
engine is used. An inference strategy and an explanation mechanism are provided.

The structure of the paper is as follows. Sections 2 and 3 present the knowledge
representation schemes and the architecture of HYMES respectively. In Sections 4 and 5 the
hybrid inference strategy and the explanation mechanism are presented respectively. Section
6 presents some examples, whereas Section 7 experimental results. Finally, Section 8
concludes.

2. Knowledge Representation in HYMES

Neurules (: neural rules) are a kind of hybrid rules. Each neurule (Fig. 1a) is considered as
an adaline unit (Fig.1b). The inputs Ci (i=1,...,n) of the unit are the conditions of the rule.
Each condition Ci is assigned a number sfi, called a significance factor, corresponding to the
weight of the corresponding input of the adaline unit. Moreover, each rule itself is assigned a
number sf0, called the bias factor, corresponding to the bias of the unit.

Each input takes a value from the following set of discrete values: [1 (true), -1 (false), 0
(unknown)]. The output D, which represents the conclusion (decision) of the rule, is
calculated via the formulas:

 D = f(a) , a = 0 + i i
i=1

n
s f s f C∑ (1)

where a is the activation value and f(x) the activation function, which is a threshold function:

Hence, the output can take one of two values, ‘-1’ and ‘1’, representing failure and success of
the rule respectively.

The general syntax (structure) of a neurule is (where ‘{ }’ denotes zero, one or more
occurrences and ‘< >’ denotes non-terminal symbols):

<rule>::= (<bias-factor>) if <conditions>
 then <conclusions>
<conditions>::= <condition> {, <condition>}
<conclusions>::= <conclusion> {, <conclusion>}
<condition>::= <variable> <l-predicate> <value> (<significance-factor>)
<conclusion>::= <variable> <r-predicate> <value>

where <variable> denotes a variable, that is a symbol representing a concept in the domain,
e.g. ‘sex’, ‘pain’ etc, in a medical domain. A variable in a condition can be either an input
variable or an intermediate variable, whereas a variable in a conclusion can be either an
intermediate or an output variable or both. An input variable takes values from the user
(input data), whereas intermediate and output variables take values through inference, since
they represent intermediate and final conclusions respectively.

<l-predicate> denotes a symbolic or a numeric predicate. The symbolic predicates are {is,
isnot}, whereas the numeric predicates are {<, >, =}. <r-predicate> can only be a symbolic
predicate. <value> denotes a value. It can be a symbol or a number. The significance factor
of a condition represents the significance (weight) of the condition in drawing the
conclusion(s).

F

Neurules are dis
conclusions contain

Symbolic rules
significance factors
(For example neuru

3. The Architec

In Fig.2, the arc
rectangle) consists
system: the hybrid
(WM) and the expla

. . .
(sf1)

(sf2)
(sfn)

(sf0)

D
(sf0) if C1 (sf1),

 C2 (sf2),

 …

 Cn (sfn)

 then D
(a) (b)

ig.1 (a) Form of a neurule (b) corresponding adaline unit

tinguished in intermediate and output rules, depending on whether their
 intermediate or output variables respectively.
have the same syntax and semantics as neurules, except of the bias and
, which are missing. Symbolic rules are finally converted into neurules.
les see Section 6.1).

ture of HYMES

hitecture of HYMES is illustrated. The run-time system (in the dashed
of four modules, functionally similar to those of a conventional rule-based
rule base (HRB), the hybrid inference engine (HIE), the working memory
nation mechanism (EXM).

C1 C2 Cn

The HRB contains neurules produced either from empirical (training) data or from
symbolic rules. In the first case, the initial neurules, constructed by the user using
dependency information between concepts (variables), are trained by the neurules training
mechanism (NTM) using training examples produced from available empirical data by the
user. This process is described in (Hatzilygeroudis and Prentzas 2001). The user is assisted in
the creation of training data by the training data elicitation mechanism (TDEM) described in
section 3.1. In the second case, the symbolic rules, constructed by the user via a knowledge
acquisition process, are converted to neurules via the conversion and training mechanism
(CTM). The conversion process is described in (Hatzilygeroudis and Prentzas 2000b). That
process may produce not only neurules, but also symbolic rules due to the fact that some
symbolic rules may correspond to non-separable (boolean) functions. However, single
symbolic rules can be easily converted into neurules: we set all sfi = 1 and sf0 = − (n − 0.5),
where n is the number of conditions (inputs) of the rule (neural unit). For inference reasons
(see Section 4), the conditions in each neurule are ranked in descending order, according to
the absolute values of their significance factors.

The HIE is responsible for making inferences by taking into account the input data in the
WM and the rules in the HRB. The WM contains facts. A fact has the same format as a
condition or a conclusion of a rule. However, it can have as value the special symbol
“unknown”. Facts represent either initial conditions or intermediate or final conclusions
produced during an inference course. Finally, the EXM is responsible for producing an
explanation of the reasoning the system used to reach a conclusion, in the form of if-then
rules.

Fig. 2. The architecture of HYMES

4. The Hybrid Inference Engine

The hybrid inference engine implements the way neurules co-operate to reach a
conclusion. It is based on the ‘firing ratio’, a measurement of the firing intention of a
neurule, which is similar to the ‘convergence ratio’, introduced in (Ghalwash 1998).

Generally, the output of a neurule is computed according to Eq. (1). However, it is
possible to deduce the output of a neurule without knowing the values of all of its conditions.
To achieve this, we define for each neurule the known sum (kn-sum) and the remaining sum
(rem-sum) as follows:

 (2)

 (3)

where E is the set of evaluated conditions, U the set of unevaluated conditions and Ci is the
value of condition condi. So, ‘known-sum’ is the weighted sum of the values of the already
known (i.e. evaluated) conditions (inputs) of the corresponding neurule and ‘remaining sum’
represents the largest possible weighted sum of the remaining (i.e. unevaluated) conditions of
the neurule. If |kn-sum| > rem-sum for a certain neurule, then evaluation of its conditions can
stop, because its output can be deduced regardless of the values of the unevaluated
conditions. In this case, its output is guaranteed to be '-1' if kn-sum < 0 whereas it is ‘1’, if
kn-sum > 0. So, we define the firing ratio (fr) of a neurule as follows:

 fr = (4)

The firing ratio of a neurule is an estimate of its intention that its output will become ‘±1’.
Whenever fr > 1, the values of the evaluated conditions can determine the value of its output,
regardless of the values of the unevaluated conditions. The rule then evaluates to ‘1’ (true), if
kn-sum > 0 or to ‘-1’ (false), if kn-sum < 0. In the first case, we say that the neurule is fired,
whereas in the second that it is blocked. Notice, that the firing ratio has meaning only if rem-
sum ≠ 0. If rem-sum = 0, all the conditions have been evaluated and its output is evaluated
according to kn-sum.

Initially, the values of the variables (conditions) may be not known to the system. The kn-
sum for every neurule is then equal to its bias factor, whereas its rem-sum is equal to the sum
of the absolute values of all its significance factors. If the value of a variable becomes
known, it influences the values of the conditions containing it and hence the known sums, the
remaining sums and the firing ratios of the corresponding unevaluated neurules. If an
intermediate neurule evaluates, the known sums, the remaining sums and the firing ratios of
all other unevaluated neurules with a condition containing its intermediate variable should be
also updated. Obviously, a firing ratio is updated only if the corresponding remaining sum is
not equal to zero.

Unevaluated neurules that are updated, after a variable value propagation, constitute the
participating neurules. The inference mechanism tries then to focus on participating neurules
whose firing ratio is close to exceeding ‘1’. More specifically, it selects the one with the
maximum firing ratio, because it is the most likely, it intends, to fire. The system tries to
evaluate the first unevaluated condition, which is the one with the maximum absolute
significance factor (recall that conditions are sorted). After evaluation of the condition, kn-

kn-sum
rem-sum

sum, rem-sum and fr are computed. If rem-sum = 0 or fr > 1, it evaluates and its conclusion is
put in the WM. If the system reaches a final conclusion, it stops.

More formally, the inference algorithm is as follows:

1. If there is input data in the WM, update the known sums, the remaining sums and the
firing ratios of all the affected neurules, which become the participating neurules. If
there is no initial input data, compute the initial values of the known sums, the
remaining sums and the firing ratios of all the neurules and regard them as
participating.

2. If there is a participating neurule with (fr > 1 or rem-sum = 0) and (kn-sum > 0), mark
the rule as fired and its conclusion as ‘true’ and put it in the WM. If there is a
participating neurule with (fr > 1 or rem-sum = 0) and (kn-sum < 0), mark the rule as
blocked and if there are no other non-blocked neurules with the same conclusion,
mark its conclusion as ‘false’ and put it in the WM. Remove it from the participating
rules. Update all the affected conditions as well as the known sums, the remaining
sums and the firing ratios of the corresponding neurules and put them in the
participating neurules. Execute this step recursively.

3. While the system has not reached a final conclusion do:
3.2.1 From the participating neurules select the one with the maximum firing ratio.

If there are no participating neurules, select the unevaluated with the
maximum fr.

3.2.2 Consider the first unevaluated condition of the selected neurule. If it contains
an input variable, ask the user for its value. If it contains an intermediate
variable instead, find an unevaluated neurule with the maximum firing ratio
that contains the variable in its conclusion and execute this step recursively
taking this neurule as the selected.

3.2.3 Clear participating rules. According to the input data given by the user,
update all the affected conditions as well as the known sums, the remaining
sums and the firing ratios of the corresponding neurules and put them in the
participating neurules.

3.2.4 The same as 2.
4. If there are no conclusions in the WM containing output variables, stop (failure).

Otherwise, display the conclusions and stop (success).

5. The Explanation Mechanism

The explanation mechanism justifies inferences by producing a set of if-then rules,
explaining how the conclusions were reached. The conclusions of the explanation rules
contain the inferred output variables. Their conditions contain a subset of the input and
intermediate variables participating in drawing the conclusions, that is those variables whose
values were either given by the user or inferred during the inference process, possibly with
changes to their predicates. More specifically, the conditions in the explanation rules are the
ones with the most positive contribution in producing the output of the corresponding
neurule.

For explanation purposes, the conditions of an evaluated neurule are distinguished in
positive and negative conditions. In the case of a fired neurule, positive conditions are either

the ones evaluated to true ('1') and had a positive significance factor or the ones evaluated to
false ('-1') and had a negative significance factor. In the case of a blocked neurule, positive
conditions are either the ones evaluated to true ('1') and had a negative significance factor or
the ones evaluated to false ('-1') and had a positive significance factor. Conditions that are
unknown or negative are not included in explanation rules. Furthermore, some of the positive
conditions may be also not included, based on the fact that they are not necessary.

The following process is followed in order to find the necessary positive conditions:

1. Let pos-sum be the weighted sum of all the positive conditions plus the bias factor,
neg-sum be the weigthed sum of the negative conditions and nec-set, unnec-set the
sets of necessary and unnecessary positive conditions respectively. Set nec-set to
include all positive conditions and unnec-set to be the empty set.

2. While |pos-sum|>|neg-sum| and nec-set contains more than one condition do:
2.1. Let Ci be the positive condition with the least absolute significance factor, say sfi.
Delete Ci from nec-set and insert it to unnec-set.
2.2. pos-sum ← pos-sum - Ci*sfi
 neg-sum ← neg-sum + |sfi|

3. The necessary positive conditions are those in nec-set plus the last one inserted to
unnec-set.

4. If a condition in the nec-set is evaluated to false, change its predicate from ‘is’ to
‘isnot’ and vice versa.

Following is a more formal outline of the explanation mechanism:

For each of the fired output neurules do:
1. Generate an if-then rule whose conclusion is the neurule's conclusion and its

conditions are the necessary positive conditions of the neurule. Make possible
changes to the predicates according to the values of the conditions (as in step 4,
above).

2. For each condition containing an intermediate variable, an if-then rule is produced
based on an evaluated neurule having that condition as its conclusion. The predicate
of the condition is the one that was before its possible change from 'is' to 'is-not' and
vice versa took place. More than one neurule may have the condition as their
conclusion. If the condition was evaluated to true, only one of these neurules will
have its output evaluated to '1' and will be the chosen one. If the condition was
evaluated to false, then the outputs of all neurules having it as their conclusion were
evaluated to '-1'. In this case, the neurule with the maximum firing ratio will be
chosen. Step 1 is recursively executed for the chosen neurule.

6. Examples

6.1 An example knowledge base

We use as an example to illustrate the functionalities of our system the one presented in
(Gallant 1993). It contains training data dealing with acute theoretical diseases of the
sarcophagus. There are six symptoms (Swollen feet, Red ears, Hair loss, Dizziness, Sensitive
aretha, Placibin allergy), two diseases (Supercilliosis, Namastosis) whose diagnoses are

based on the symptoms and three possible treatments (Placibin, Biramibio, Posiboost). Also,
dependency information is provided. We used the dependency information to construct the
initial neurules and the training data provided to train them. The produced knowledge base,
which contains six neurules (DR1-DR6), is illustrated in Fig.3. An equivalent knowledge
base forming a multilevel network is presented in (Gallant 1988; Gallant 1993).

6.2 An example inference

We suppose that there is the following initial data in the WM: ‘HairLoss is true’. So, the
firing ratios of neurules DR1, DR2 and DR4 should be updated. (We notice here that the
initial firing ratios of the neurules are calculated at construction time). The inference tracing
is presented below.

WM: {‘HairLoss is true’ (TRUE)}
Affected neurules: DR1, DR2, DR4
Updated frs: |3.2/4.4| = 0.73 (DR1), |3.2/6.4| = 0.5 (DR2), |-7.6/6.4| = 1.19 (DR4)
Fired neurules:
Blocked neurules: DR4
Participating neurules: [DR1, DR2]

DR1: (-0.4) if RedEars is true (-0.8),
SwollenFeet is true (3.6),
HairLoss is true (3.6)
then Disease is Supercilliosis

DR2: (1.4) if Dizziness is true (4.6),
SensitiveAretha is true (1.8),
HairLoss is true (1.8)
then Disease is Namastosis
DR3: (-2.2) if PlacibinAllergy is true (-5.4),
Disease is Supercilliosis (4.6)
Disease is Namastosis (1.8),
then Treatment is Placibin

DR4: (-4.0) if HairLoss is true (-3.6),
Disease is Namastosis (3.6),
Disease is Supercilliosis (2.8)
then Treatment is Biramibio

DR5: (-2.2) if Treatment is Biramibio (-2.6),
Treatment is Placibin (1.8)
then Treatment is Posiboost

DR6: (-2.2) if Treatment is Placibin (-1.8),
Treatment is Biramibio (1.0)
then Treatment is Posiboost

Fig. 3. An example knowledge base.

Given that there is a neurule (DR4) with fr > 1, we should propagate its conclusion
(intermediate data).

Intermediate data: ‘Treatment is Biramibio’ (FALSE)
WM: {‘HairLoss is true’ (TRUE), ‘Treatment is Biramibio’ (FALSE)}
Affected neurules: DR5, DR6
Updated frs: |0.4/1.8| = 0.22 (DR5), |-3.2/1.8| = 1.78 (DR6)
Fired neurules:
Blocked neurules: DR4, DR6
Participating neurules: [DR5, DR1, DR2]

Although there is a neurule (DR6) with fr > 1, we do not propagate its conclusion, because it
is an output neurule. Also, given that there is another non-blocked rule with the same
conclusion, we do not put the conclusion in the WM. So, we proceed by selecting a neurule
from the participating set.

Selected neurule: DR1 (the maximum fr)
User data: ‘SwollenFeet is true’ (FALSE)
WM: {‘HairLoss is true’ (TRUE), ‘Treatment is Biramibio’ (FALSE), ‘SwollenFeet is

true’ (FALSE)}
Affected neurules: DR1
Updated frs: |-0.4/0.8| = 0.5 (DR1)
Participating neurules: [DR1]
Fired neurules:
Blocked neurules: DR6, DR4

Given that there is no neurule with fr > 1, we proceed with a participating rule.

Selected neurule: DR1 (the maximum fr)
User data: ‘RedEars is true’ (FALSE)
WM: {‘HairLoss is true’ (TRUE), ‘Treatment is Biramibio’ (FALSE), ‘SwollenFeet is

true’ (FALSE), ‘RedEars is true’ (FALSE)}
Affected neurules: DR1
Updated frs: kn-sum = 0.4, rem-sum = 0 (because all conditions of DR1 have been
evaluated, fr has no meaning)
Participating neurules:
Fired neurules: DR1
Blocked neurules: DR6, DR4

Given that kn-sum > 0 and DR1 is fired, its conclusion should be propagated.

Intermediate data: ‘Disease is Supercilliosis’ (TRUE)
WM: {‘HairLoss is true’ (TRUE), ‘Treatment is Biramibio’ (FALSE), ‘SwollenFeet is

true’ (FALSE), ‘RedEars is true’ (FALSE), ‘Disease is Supercilliosis’ (TRUE)}
Affected neurules: DR3 (DR4 has been evaluated)
Updated frs: |2.4/7.2| = 0.33 (DR3)
Participating neurules: DR3

Fired neurules: DR1
Blocked neurules: DR6, DR4

Given that there is no neurule with fr > 1, we proceed.

Selected neurule: DR3
User data: ‘PlacibinAllergy is true’ (FALSE)
WM: {‘HairLoss is true’ (TRUE), ‘Treatment is Biramibio’ (FALSE), ‘SwollenFeet is

true’ (FALSE), ‘RedEars is true’ (FALSE), ‘Disease is Supercilliosis’ (TRUE),
‘PlacibinAllergy is true’ (FALSE)}

Affected neurules: DR3
Updated frs: |7.8/1.8| = 4.33 (DR3)
Participating neurules:
Fired neurules: DR1, DR3
Blocked neurules: DR6, DR4

Given that there is a neurule (DR3) with fr > 1 and its conclusion is both an output and
intermediate we should do both, put it in the WM and propagate it.

Output data: ‘Treatment is Placibin’ (TRUE)
Intermediate data: ‘Treatment is Placibin’ (TRUE)
WM: {‘HairLoss is true’ (TRUE), ‘Treatment is Biramibio’ (FALSE), ‘SwollenFeet is

true’ (FALSE), ‘RedEars is true’ (FALSE), ‘Disease is Supercilliosis’ (TRUE),
‘PlacibinAllergy is true’ (FALSE), ‘Treatment is Placibin’ (TRUE)}

Affected neurules: DR5
Updated frs: kn-sum = 2.2, rem-sum = 0 (because all conditions of DR5 have been
evaluated, fr has no meaning)
Participating neurules:
Fired neurules: DR5, DR3, DR1
Blocked neurules: DR6, DR4

Given that kn-sum > 0 and the DR5 is fired and it is an output rule, its conclusion is put in
the WM.

Output data: ‘Treatment is Posiboost’ (TRUE)
Participating neurules:
WM: {‘HairLoss is true’ (TRUE), ‘Treatment is Biramibio’ (FALSE), ‘SwollenFeet is

true’ (FALSE), ‘RedEars is true’ (FALSE), ‘Disease is Supercilliosis’ (TRUE),
‘PlacibinAllergy is true’ (FALSE), ‘Treatment is Placibin’ (TRUE), ‘Treatment is
Posiboost’ (TRUE)}

Participating neurules:
Fired neurules: DR5, DR3, DR1
Blocked neurules: DR6, DR4

So, finally we have the following final conclusions.

Output data: ‘Treatment is Placibin’, ‘Treatment is Posiboost’

6.3 An explanation example

In this section, we present the explanation that will be produced by our system for the
above inference. We give tracings for the first two of them. Given that there are two outputs,
‘Treatment is Posiboost’ and ‘Treatment is Placibin’, the explanation mechanism should
provide explanations for them. In order to generate an explanation rule for the first output,
the explanation mechanism will examine neurule DR5 whose output is ‘Treatment is
Posiboost’ and was evaluated to ‘1’ (TRUE). The explanation rule extracted is the following:

EXR1
if Treatment isnot Biramibio,
 Treatment is Placibin
then Treatment is Posiboost.

The tracing of the generation of the above explanation rule is as follows:

nec-set: {‘Treatment is Biramibio’, ‘Treatment is Placibin’}
unnec-set: { }
pos-sum: -2.2 + 2.6 + 1.8 = 2.2
neg-sum: 0

Since |pos-sum| > |neg-sum|:

nec-set: {‘Treatment is Biramibio’}
unnec-set: {‘Treatment is Placibin’}
pos-sum: 2.2 - 1.8 = 0.4
neg-sum: 1.8

Since |pos-sum| < |neg-sum|:

nec-set: {‘Treatment is Biramibio’, ‘Treatment is Placibin’}.

Due to the fact that ‘Treatment is Biramibio’ was evaluated to false, we change its predicate
from ‘is’ to ‘isnot’.

Because the explanation rule EXR1 contains an intermediate variable, a corresponding
explanation rule should be generated for it (with conclusion ‘Treatment isnot Biramibio’). To
this end, neurule DR4 is examined and the following explanation rule is generated:

EXR2
if HairLoss is true
then Treatment isnot Biramibio

The tracing of the generation of the above explanation rule is as follows:

nec-set: {‘HairLoss is true’}
unnec-set: { }

pos-sum: -4.0 -3.6 = -7.6
neg-sum: 2.8

Since nec-set has only one condition, it remains as it is. Furthermore, since DR4 was
evaluated to be FALSE, we change the predicate of its conclusion from ‘is’ to ‘isnot’.

For the output ‘Treatment is Placibin’, neurule DR3 is examined and the following
explanation rule is generated:

EXR3
if PlacibinAllergy is true,
 Disease is Supercilliosis
then Treatment is Placibin

Given that there is again an intermediate variable, one more explanation rule for its condition
(‘Disease is Supercilliosis’) should be provided. This time neurule DR1 is examined and the
following explanation rule is generated:

EXR4
if HairLoss is true,
 RedEars is false
then Disease is Supercilliosis

7. Experimental Results

This section presents experimental results comparing the performance of our inference and
explanation mechanism with those presented in (Ghalwash 1998). Our inference mechanism
was applied to two neurule bases, based on two datasets (described below). The inference
mechanism in (Ghalwash 1998) was applied to two connectionist knowledge bases, which
correspond to the same datasets and were created by the technique described in (Gallant
1988, Gallant 1993). The comparison is made in terms of the number of inputs asked by the
system in order to draw conclusions (as suggested in (Ghalwash 1998)) and the number of
the conditions/inputs visited for some kind of computation in drawing conclusions.

The first dataset is that used for our example knowledge base (Section 6.1) and taken from
(Gallant 1988; Gallant 1993). The dataset is incomplete. It consists of 8 input data patterns
out of 64 possible. The second dataset is taken from the machine learning ftp repository (see
Dataset2 in the References) and involves a database for fitting contact lenses. This dataset is
complete and contains 24 input patterns each consisting of four input and one output attribute
(variable). The input attributes are: age of the patient (young, pre-presbyopic, presbyopic),
spectacle prescription (myope, hypermyope), astigmatic (no, yes), tear production rate
(reduced, normal). The target attribute takes three possible values (1, 2 or 3) denoting if the
patient should be fitted with hard contact lenses, soft contact lenses or if he/she should not be
fitted with contact lenses. The equivalent knowledge base is forming a multilevel network
constructed according to the method described in (Gallant 1988; Gallant 1993), as the one of
the first data set.

Table 1 depicts the results. Initially, the values of all variables were not known. We call
ACUTE and LENSES the two types of the knowledge bases. The comparison shows that our
inference engine performs slightly better than the other system as far as the number of asked

variables/inputs is concerned and much better as far as conditions/inputs visits are concerned.
Although this latter is not significant for small knowledge bases, it may become important
for very large knowledge bases.

Table 1
HYMES GALLANT-GHALWASH

KB INFER-
ENCES ASKED EVALS EXPLS ASKED EVALS EXPLS

ACUTE 48 166 (3.5) 486 (10.1) 59 (1.2) 167 (3.5) 738 (15.4) 71 (1.5)
LENSES 24 79 (3.3) 602 (25) 24 (1) 80 (3.3) 886 (36.9) 36 (1.5)

In table 2, the explanation rules produced by HYMES and the system in (Ghalwash 1998),

for the inference in 6.2, are presented, where ‘uA’ and ‘uB’ are intermediate variables used
in (Ghalwash 1998) to construct the equivalent (neural) knowledge base. The rules produced
by HYMES are less and more natural. The existence of meaningless intermediate variables,
in the other system, increases the number of its explanation rules and make them difficult to
comprehend.

Table 2

HYMES GHALWASH
EXR1
if Treatment isnot Biramibio,
 Treatment is Placibin
then Treatment is Posiboost.

EXR2
if HairLoss is true
then Treatment isnot Biramibio

EXR3
if PlacibinAllergy is true,
 Disease is Supercilliosis
then Treatment is Placibin

EXR4
if HairLoss is true,
 RedEars is false
then Disease is Supercilliosis

GH-EXR1
if uA isnot true,
 uB isnot true
then Treatment is Posiboost

GH-EXR2
if Treatment is Placibin,
 Treatment isnot Biramibio
then uA isnot true

GH-EXR3
if Treatment is Placibin,
 Treatment isnot Biramibio
then uB isnot true

GH-EXR4
if HairLoss is true
then Treatment isnot Biramibio

GH-EXR5
if PlacibinAllergy is true,
 Disease is Supercilliosis
then Treatment is Placibin

GH-EXR6
if HairLoss is true,
 RedEars is false
then Disease is Supercilliosis

8. Conclusion

In this paper, we presented a modular hybrid expert system tool, called HYMES, whose
knowledge base consists of neurules, a type of hybrid rules integrating symbolic rules with
neurocomputing. An attractive feature of the neurules is that compared to other connectionist
approaches they retain the modularity and to some degree the naturalness of symbolic rules.
The neurules contained in the system's knowledge base are constructed either by converting
existing symbolic rules or directly from empirical data in the form of training examples.

The run-time part of the system contains an inference mechanism for drawing conclusions
based on facts and an explanation mechanism for justifying the reached conclusions.

Experimental results based on two datasets have shown an improvement to the performance
of the inference engine compared to another system.

Also, the explanation rules, produced by the explanation mechanism are more natural and
less than the ones produced by the other system. This fact, besides the computational cost,
raises an issue of comprehensibility as far as the user is concerned. The more explanation
rules are presented to the user, the more confused he/she will be.

References

Dataset2. ftp://ftp.ics.uci.edu/pub/machine-learning-databases/
Gallant, S.I. 1988. Connectionist expert systems, Communications of the ACM, 31(2), 152-
169.
Gallant, S.I. 1993. Neural Network Learning and Expert Systems, MIT Press.
Ghalwash, A. Z. 1998. A Recency Inference Engine for Connectionist Knowledge Bases,
Applied Intelligence, 9, 201-215.
Hatzilygeroudis, I. and Prentzas, J. 2000a. Neurules: Integrating Symbolic Rules and
Neurocomputing, in D. Fotiades and S. Nikolopoulos (Eds), Advances in Informatics, World
Scientific Pub., 122-133.
Hatzilygeroudis, I. and Prentzas, J. 2000b. Neurules: Improving the Performance of
Symbolic Rules. International Journal on AI Tools (IJAIT), 9(1), 113-130.
Hatzilygeroudis, I. and Prentzas, J. 2001. Constructing Modular Hybrid Knowledge Bases
for Expert Systems. International Journal on AI Tools (IJAIT), 10(1-2), 87-105.
Medsker L. R. 1994, Hybrid Neural Networks and Expert Systems, Kluwer Academic
Publishers, Boston.
Letz R., S. Bayerl and W. Bibel 1992. Setheo: A high-performance theorem prover. Journal
of Automated Reasoning, 8(2), 183-212.
Tirri H. 1991. Implementing Expert Systems Rule Conditions by Neural Networks. New
Generation Computing, 10, pp. 55-71.
Tirri H. 1995. Replacing the Pattern Matcher of an Expert System with a Neural Network. In
Intelligent Hybrid Systems, Goonatilake S. and Sukdev K. (Eds), John Wiley & Sons.

	KB
	References

