
Updating a Hybrid Rule Base with Changes
to its Symbolic Source Knowledge

Jim Prentzas1, 2 and Ioannis Hatzilygeroudis1, 2

Abstract. Neurules are a kind of hybrid rules that combine a
symbolic (production rules) and a connectionist (adaline unit)
representation. One way that neurules (target knowledge) can
be produced is by converting symbolic rules (source
knowledge). However, source knowledge may change, so that
updating corresponding target knowledge is necessary. Changes
concern insertion of new and removal of old symbolic rules. In
this paper, methods for updating target knowledge to follow
changes made in corresponding source knowledge are
presented. The methods are efficient in the sense that they do
not require retraining of the whole affected part of the target
knowledge, but of as small portion of it as possible.

1 INTRODUCTION
There has been extensive research activity at combining (or
integrating) the symbolic and the connectionist approaches for
knowledge representation in expert systems [7, 8, 10].
Especially, there are a number of efforts combining symbolic
rules and neural networks [2, 3, 6, 9]. They give pre-eminence
to connectionism and use a neural network as a knowledge
base. The main objective is to reduce knowledge elicitation
from experts to a minimum. In such approaches, connectionism
is mainly used as a means for refining an initial background
rule-base. Integration with symbolic representation is rather
loose. A weak point of them is that their knowledge base lacks
the naturalness and modularity of symbolic rules; it is
incomprehensible. Therefore, explanations are often provided
in the form of if-then rules by rule extraction methods [1].

Neurules [4] integrate symbolic rules and connectionism, but
in a different way. They give pre-eminence to the symbolic
component. Neurocomputing is used within the symbolic
framework to improve the performance of symbolic rules. A
symbolic rule-base, called the source knowledge, is converted
into a hybrid one, a neurule-base, called the target knowledge.
The target knowledge base is quite smaller, since in average
each neurule is a merger of more than one symbolic rule,
retains the modularity of production rules, since it consists of
autonomous units (neurules), and also retains their naturalness
in a great degree, since neurules look much like symbolic rules.
Also, the inference mechanism is a tightly integrated process,
which results in more efficient inferences than those of

 1 University of Patras, Dept of Computer Engineering & Informatics,

26500 Patras, Hellas (Greece), email: {prentzas, ihatz}@ceid.upatras.gr.
 2 Computer Technology Institute, P.O. Box 1122, 26110 Patras, Hellas

(Greece).

symbolic rules. Finally, explanations, in the form of if-then
rules, can be produced [5].

Given that the source knowledge may change, due to
updates, the problem of maintaining the target knowledge to
reflect the changes, without performing extended re-
conversion, arises. As far as we know, this problem has not
been addressed by other hybrid approaches.

In this paper, we present methods for efficient maintenance
of the knowledge base (target knowledge) of a neurule-based
expert system, due to changes to its source knowledge. Section
2 presents neurules. Section 3 introduces the methods, presents
some examples and discusses the correctness of the methods.
Finally, Section 4 concludes.

2 NEURULES

2.1 Syntax and semantics
Neurules are a kind of hybrid rules. The form of a neurule is
depicted in Fig.1a. Each condition Ci is assigned a number sfi,
called its significance factor. Moreover, each rule itself is
assigned a number sf0, called its bias factor. Internally, each
neurule is considered as an adaline unit (Fig.1b). The inputs Ci
(i=1,...,n) of the unit are the (values of the) conditions of the
rule. The weights of the unit are the significance factors of the
neurule and its bias is the bias factor of the neurule. Each input
takes a value from the following set of discrete values: [1
(true), -1 (false), 0 (unknown)]. The output D, which represents
the conclusion (decision) of the rule, is calculated via the
standard formulas:

where a is the activation value and f(x) the activation function,
a threshold function. Hence, the output can take one of two
values (‘-1’, ‘1’) representing failure and success of the rule
respectively. The general syntax of a condition Ci and the
conclusion D is:
 <condition>::= <variable> <l-predicate> <value>
 <conclusion>::= <variable> <r-predicate> <value>
where <variable> denotes a variable, that is a symbol
representing a concept in the domain, e.g. ‘sex’, ‘pain’ etc, in a

medical domain. <l-predicate> and <r-predicate> are one of {is,
isnot}. <value> denotes a value. It can be a symbol or a
number.

Corresponding symbolic rules have the same syntax as that
in Fig.1a, without the significant factors and where ‘,’ denotes
conjunction.

Figure 1. (a) Form of a neurule (b) a neurule as an adaline unit

2.2 Construction of a neurule-base
Construction of a neurule-base (NRB) from a symbolic rule-
base (SRB) is made by the basic conversion algorithm
(introduced in [4]), which is outlined here: (a) A symbolic rule
with a unique conclusion is individually converted into a
neurule using as training set the valid patterns of the truth table
of its logical function (an AND function of their conditions).
(b) Symbolic rules with the same conclusion constitute a
merger set. From each merger set, a merger is produced, which
is a neurule mould having as conditions all the conditions of
the symbolic rules in the merger set (without duplications) and
zero significant factors. Then, the training set for each merger is
extracted from the truth table of the combined logical function
of the rules in its merger set (an OR function of their AND
functions), after a filtering process, during which some patterns
of the truth table are eliminated (for a detailed treatment see
[4]).

Table 1. An example merger set of symbolic rules

R1:if arterial-conc is slight-incr,
 blood-conc is normal,
 scan-conc is normal,
 capill-conc is mod-incr,
 venous-conc is highly-incr
 then disease is early-inflam

R2:if arterial-conc is mod-incr,
 blood-conc is highly-incr,
 scan-conc is normal,
 capill-conc is slight-incr,
 venous-conc is slight-incr,
 then disease is early-inflam

R3:if arterial-conc is mod-incr,
 blood-conc is normal,
 scan-conc is normal,
 capill-conc is slight-incr,
 venous-conc is normal
 then disease is early-inflam

R4:if arterial-conc is mod-incr,
 blood-conc is mod-incr,
 scan-conc is normal,
 capill-conc is mod-incr,
 venous-conc is slight-incr
 then disease is early-inflam

R5:if arterial-conc is mod-incr,
 blood-conc is normal,
 scan-conc is normal,
 capill-conc is mod-incr,
 venous-conc is slight-incr
 then disease is early-inflam

R6:if arterial-conc is mod-incr,
 blood-conc is slight-incr,
 scan-conc is normal,
 capill-conc is mod-incr,
 venous-conc is mod-incr
 then disease isearly-inflam

Training is performed using the standard LMS algorithm.
When the algorithm succeeds, that is values for the significant
factors are calculated that successfully classify all training
examples, a neurule is produced. When it fails (case of
inseparable training examples) a splitting process is followed,
which produces more than one neurule having the same
conclusions, called sibling neurules. To this end, the closeness
between two rules is defined as the number of their common
conditions. A least closeness pair (LCP) of rules in a merger
set is a pair of rules with the least closeness (LC) in the set.

The process is the following:
1. Train the merger using the specified training set.
2. If training fails, find a LCP and produce two subsets of the

merger set, each having as initial element (a different) one of
the LCP rules, called its pivot. In each merger subset put the
symbolic rules (of the initial merger set), which are closer to
its pivot.

3. For each merger subset, apply step 1 recursively until either
training succeeds or the merger subset contains only one rule
(remaining rule)

4. Convert any remaining rule to a neurule.

Table 2. Neurules produced from the merger set of Table 1

NR1: (-11.4)
if venous-conc is high-incr (3.3),
 arterial-conc is slight-incr (3.0),
 blood-conc is normal (2.8),
 scan-conc is normal (2.7),
 capill-conc is mod-incr (2.7)
then disease is early-inflam

NR2: (-11.4)
if venous-conc is slight-incr (3.3)
 arterial-conc is mod-incr (3.0),
 blood-conc is high-incr (2.8),
 scan-conc is normal (2.7),
 capill-conc is slight-incr (2.7)
then disease is early-inflam

NR3: (-11.4)
if venous-conc is normal (3.3),
 arterial-conc is mod-incr (3.0),
 blood-conc is normal (2.8),
 scan-conc is normal (2.7),
 capill-conc is slight-incr (2.7)
then disease is early-inflam

NR4-5: (-7.8)
if venous-conc is slight-incr (3.3)
 arterial-conc is mod-incr (3.0),
 blood-conc is mod-incr (2.8),
 scan-conc is normal (2.7),
 capill-conc is mod-incr (2.7),
 blood-conc is normal (2.6),
then disease is early-inflam

NR6: (-11.4)
if venous-conc is mod-incr (3.3),
 arterial-conc is mod-incr (3.0),
 blood-conc is slight-incr (2.8),
 scan-conc is normal (2.7),
 capill-conc is mod-incr (2.7)
then disease is early-inflam

Figure 2. The splitting tree for the merger set of Table 1

For reasons that will become clear in the next section, for

each initial merger set the splitting process is stored as a tree,
which is called the splitting tree. The root of the tree
corresponds to the initial merger set. The intermediate nodes
and leaves correspond to the subsequent subsets into which the
initial merger set was split. An intermediate node denotes a
subset that was split, due to training failure, whereas a leave
denotes a subset that was successfully trained and produced a
neurule. The pivot of each (sub)set is attached to the
corresponding edge of the tree. It can be easily seen that the
merger (sub)set of the root or an intermediate node is a superset
of the merger subsets related to its descendant nodes.
Furthermore, the nearer one gets to the leaves, the greater the
mean closeness between the rules of the corresponding merger
subsets. Tree information is stored in the neurule-base
alongside the produced neurules.

To illustrate how splitting is performed, we use the merger
set of rules R1-R6 presented in Table 1, from which five
neurules are produced, shown in Table 2. Figure 2 depicts the
corresponding splitting tree. Due to inseparability, the initial
merger set {R1, R2, R3, R4, R5, R6} is split in two subsets:
{R1} and {R2, R3, R4, R5, R6}, with LCP: (R1, R2) (LC=1).
{R1} produces neurule NR1. {R2, R3, R4, R5, R6} is split in
{R2, R3} and {R4, R5, R6}, with LCP: (R3, R4) (LC=2).
Then, {R2, R3} is split in {R2} and {R3} and NR2, NR3 are
produced and so on.

3 UPDATE METHODS
The source knowledge (SRB), however, may change. This
implies that the target knowledge (NRB) should be updated.
The possible changes are due to (a) insertion of a new rule and
(b) removal of an existing rule. Modification of a rule is
equivalent to removal of the old rule and insertion of a new
rule.

3.1 Rule insertion
Given the insertion of a new symbolic rule R in SRB, three
cases can be distinguished:
(a) There is no sibling neurule of R in NRB.
(b) There is only one sibling neurule of R in NRB.
(c) There are more than one sibling neurule of R in NRB.

Case (a) is the simplest. The new symbolic rule is converted
into a neurule and inserted into NRB.

If (b) is the case, it means that the corresponding merger set
was not split. To handle this, the existing neurule is removed
from NRB and a new merger set is formed containing the new
symbolic rule and the symbolic rules of the initial merger set.
The new merger is formed and trained. If training is successful,
one neurule is produced. If training fails, two neurules are
produced.

Case (c) is the most difficult. The existence of more than one
neurule with the same conclusion means that, due to
inseparability, the initial merger set was split into a number of
merger subsets. There can be three approaches:

(i) Merely convert the new symbolic rule into a neurule and
insert it into NRB. This method is computationally efficient but
increases the number of neurules in NRB, which is not
desirable.

(ii) The existing neurules are removed from NRB, the new
symbolic rule is merged with the initial merger set and training
of the new merger is performed to produce the new neurules.
This approach is inefficient, especially when more than two
neurules are produced from the initial merger set. The reason is
that it discards the information contained in the splitting tree,
thus performing extra training and splitting.

(iii) The third approach is as follows:
Starting from the root, traverse the splitting tree:

1. If the current node is not a leaf, check whether the merger
(sub)set corresponding to the node contains a rule R' whose
closeness to R is less than the LC of the (sub)set. If there is
no such rule, insert R into the merger (sub)set of the node
and execute this step recursively for the child of the node
denoted by the LCP member closer to R. If there is such a
rule R', do:

 1.1 Stop traversing the splitting tree.
 1.2 Remove from NRB all neurules corresponding to the

leaves descending from this node.
 1.3 Insert R into the corresponding merger (sub)set and split

it in two subsets with LCP: (R, R').
 1.4 Train each one of the mergers formed from the two

subsets, produce corresponding neurules (reusing parts
of the initial splitting tree to avoid unnecessary training
or splitting), insert the produced neurules into NRB and
update the splitting tree.

2. If the current node is a leaf, remove the corresponding
neurule, insert R into its merger set and train the merger. If
training fails, split the merger set, produce the two neurules,
insert them into NRB and update the splitting tree. If training
is successful, do the following:

 2.1 If the sibling node of the leaf is also a leaf and
introduction of R into their parent’s merger subset
increases the mean closeness between its rules, and the
parent node's new merger can be successfully trained, do
the following:

 2.1.1 Remove the neurule corresponding to the sibling
leaf from NRB.

 2.1.2 Insert the neurule produced from the parent node's
new merger into NRB.

 2.1.3 Update the splitting tree.
 2.2 Else do the following:
 2.2.1 Insert the neurule produced from the leaf's new

merger into NRB.
 2.2.2 Update the splitting tree.

Table 3. Inserted rule R7 and resulted neurule NR2-3-7

R7: if arterial-conc is mod-incr,
 blood-conc is normal,
 scan-conc is normal,
 capill-conc is slight-incr,
 venous-conc is slight-incr
 then disease is early-inflam

NR2-3-7: (-20.4)
if venous-conc is slight-incr (8.7),
 arterial-conc is mod-incr (8.4),
 scan-conc is normal (8.1),
 capill-conc is slight-incr (8.1),
 blood-conc is normal (8.0),
 blood-conc is highly-incr (4.6)
 venous-conc is normal (1.5),
then disease is early-inflam

As an example, consider the rules in Table 1 as SRB and those
in Table 2 as NRB. Suppose that rule R7 (Table 3) is to be
inserted. Given that more than one neurule have the same

conclusion with R7, it is a (c) case. Following approach (iii),
traversing ends at the leaf related to subset {R2} (Fig. 3).
Training of the new merger (sub)set {R2, R7} is successful.
Thus NR2 is removed from NRB. The sibling node of the {R2}
leaf is also a leaf and insertion of R7 into the subset {R2, R3},
related to their 'parent' node, increases its mean closeness from
3 ({R2, R3}) to 11/3 ({R2, R3, R7}). Therefore, training of the
merger of {R2, R3, R7} is tried. It is successful and NR2-3-7 is
produced and inserted into NRB. Meanwhile, NR3 is removed
from NRB. The splitting tree takes the form in Fig. 4. So,
insertion of R7 finally decreases the total number of neurules in
NRB from five to four (NR1, NR2-3-7, NR4-5, NR6).

Notice that approach (iii) focuses on subset {R2, R3}, which
includes the closest rules to R7. Thus, only the necessary part
of NRB was (re)trained. The part of NRB produced from R1,
R4, R5 and R6 remains intact. Approach (ii) would have
produced the same neurules, requiring though unnecessary
training and splitting. Approach (i) would have inserted the
neurule produced from R7 into NRB. At the end, NRB would
contain six neurules instead of the four resulted by approach
(iii).

Figure 3. Traversal of the splitting tree to insert R7

Figure 4. The splitting tree after insertion of R7

3.2 Rule removal
Given the removal of a symbolic rule R from SRB, two cases
can be distinguished:
(a) There is only one sibling neurule of R in NRB.
(b) There are more than one sibling neurule of R in NRB.

If (a) is the case, it means that corresponding merger set was
not split. So, the corresponding neurule is removed from NRB.
If the merger set includes only the removed rule, nothing else is
done. Otherwise, a new merger set is formed, including the

rules of the initial merger set, but excluding the removed rule.
The new merger is trained. If training is successful, one neurule
will be produced. If it fails, the merger set is split and, after
training, two neurules are produced.

There can be three approaches to handle case (b):
(i) In this approach, only the neurule whose merger set

included the removed rule is affected. The neurule is removed
from NRB. If the merger set included only the rule that is
removed, nothing else is done. Otherwise, the new merger
(formed as in (a)) is trained and corresponding neurule(s)
is(are) produced. This method is computationally efficient, but
may increase the number of sibling neurules.

(ii) All the neurules derived from the initial merger set are
removed from NRB and the merger of the initial merger set,
after excluding the removed rule, is trained. After possible
splitting, the corresponding neurule(s) is(are) produced. This
approach is inefficient, since it discards the information
contained in the splitting tree and performs training and
splitting that could have been avoided.

(iii) The third approach is as follows:
Starting from the root, traverse the splitting tree:

1. If the current node is not a leaf, check whether R is a
member of the LCP of its merger (sub)set. If it isn't, remove
R from the merger (sub)set and execute this step recursively
for the child of the node on the edge denoted by the LCP’s
member closer to R. If it is, do:

 1.1 Stop traversing the splitting tree.
 1.2 Remove the neurules produced from this merger

(sub)set.
 1.3 Remove R from the node's merger (sub)set and train the

resulted merger (possibly reusing parts of initial splitting
tree).

 1.4 Insert the produced neurules into NRB and update the
splitting tree.

2. If the current node is a leaf, do:
 2.1 Remove the neurule whose merger set included R from

NRB.
 2.2 Remove R from the leaf’s merger set.
 2.3 If R was the only member of the merger set, do:

2.3.1. If the sibling node of the leaf node is also a leaf
and the sibling node of their parent node is a leaf,
check the parent node F of the leaves' parent node.

2.3.2. If removal of R from the merger set of F increases
its mean closeness and F's new merger can be
successfully trained, do:
2.3.2.1. Remove the neurules corresponding to the

leaves descending from F.
2.3.2.2. Insert the neurule corresponding to the

new merger set of F into NRB.
2.3.2.3. Update the splitting tree.

2.3.3. Else update the splitting tree.
 2.4 If not, form the new merger and train it.
 2.5 If training fails, produce the neurules (after splitting),

insert them into NRB and update the splitting tree.
 2.6 If training succeeds, do:

2.6.1 If the sibling of the leaf node is also a leaf and
removal of R from the merger set of their parent
increases its mean closeness and the parent's new
merger can be successfully trained, do:
2.6.1.1. Remove the neurule corresponding to the

sibling leaf from NRB.

2.6.1.2. Insert the neurule produced from the
parent's new merger into NRB.

2.6.1.3. Update the splitting tree.
2.6.2 Else do:

2.6.2.1. Insert the neurule produced from the leaf's
new merger into NRB.

2.6.2.2. Update the splitting tree.
As a first example, suppose that R5 is to be removed (after

R7 insertion, Fig.4). It’s a (b) case and following approach (iii),
since R5 is not a member of any LCP, NR4-5 is removed from
NRB, the merger of {R4} is trained and NR4 is produced. The
sibling node of leaf {R4} is also a leaf ({R6}). Removal of R5
decreases the mean closeness of their parent node’s subset from
10/3 ({R4, R5, R6}) to 3 ({R4, R6}). Therefore, no training of
the merger of {R4, R6} is tried. NR4 is inserted into NRB and
the splitting tree is updated (Fig. 5). Once again a large portion
of NRB remains intact. The new NRB consists of NR1, NR2-3-
7, NR4, NR6.

Figure 5. Splitting tree after removing R5

Figure 6. The splitting tree after R6 removal

As a second example, suppose that R6 is to be removed

(after R7 insertion). R6 is not member of any LCP as far as
node {R4, R5, R6}, so R6 is removed from the subsets of its
ancestor nodes. NR4-5 and NR6 are removed from NRB and
R6 also from {R4, R5, R6}. NR4-5 is inserted in NRB and the
splitting tree is updated (Fig. 6). Notice that NR4-5 needs no
reproduction, is reused.

3.3 Discussing correctness
Given that the above algorithms concern indirect changes to
target knowledge, the question about their correctness is
reasonably set. The basis of the algorithms is the basic
conversion algorithm (introduced in [4] and outlined in Section
2.2). The criterion for the correctness of that algorithm is to
preserve inference equivalence between SRB and NRB, which
means that all inferences performed in SRB should also be

performed in NRB (with identical results). This is implicitly
proved, and also experimentally confirmed, in [4]. The proof is
based on the fact that the training set of each merger includes
the (valid) rows of the truth table of the combined logical
function of the rules in the corresponding merger set. Given
that training is complete, that is all training patterns are
successfully classified, inference equivalence is assured.

Inserting a new rule in SRB means that a new inference is
introduced. So, the rule insertion update algorithms of Section
3.1, to be correct, should assure that the new inference can also
be performed in the updated NRB. This is rather obvious, since
in any case the truth table of the new inserted rule is taken into
account in creating the new training set for the partial
reconversion. A similar thing happens when a rule is removed
from SRB. The patterns related to its truth table are removed
from the training set of the corresponding merger. So,
correctness of the rule removal update algorithms of Section
3.2 is also assured.

4 CONCLUSIONS
In this paper, we present methods for efficiently updating target
knowledge (a hybrid rule base) to reflect changes in its source
knowledge (a symbolic rule base). Target knowledge consists
of neurules, a type of hybrid rules. Neurules are produced from
symbolic rules via a conversion mechanism. Methods for
updating target knowledge in the cases of a rule insertion in and
a rule removal from source knowledge are introduced.
Efficiency refers to updating target knowledge (a) with as little
reconversion as possible and (b) preserving the number of
neurules as small as possible. We achieve that by storing
information related to the conversion process in a tree, called
splitting tree. The methods are also argued to be correct.

REFERENCES
[1] R. Andrews, J. Diederich and A. Tickle, ‘A survey and critique for

extracting rules from trained ANN’, Knowledge-Based Systems, 8(6),
373-389 (1995).

[2] L-M Fu and L-C Fu, ‘Mapping rule-based systems into neural
architecture’, Knowledge-Based Systems 3, 48-56 (1990).

[3] L-M Fu, ‘A Connectionist Approach to Rule Refinement’, Applied
Intelligence, 2, 93-103 (1992).

[4] I. Hatzilygeroudis and J. Prentzas, ‘Neurules: Improving the
Performance of Symbolic Rules’, International Journal on AI Tools
9(1), 113-130, (2000).

[5] I. Hatzilygeroudis and J. Prentzas, ‘An Efficient Hybrid Rule Based
Inference Engine with Explanation Capability’, Proceedings of the
14th International FLAIRS Conference, Key West, FL, 227-231
(2001).

[6] J.J. Mahoney, ‘Combining Symbolic and Connectionist Learning
Methods to Refine Certainty-Factor Rule-Bases’, PhD Dissertation,
University of Texas at Austin, 1996.

[7] K. McGarry, S. Wertmer, and J. MacIntyre, ‘Hybrid neural systems:
from simple coupling to fully integrated neural networks’, Neural
Computing Surveys, 2, 62-93, (1999).

[8] R. Sun and E. Alexandre (eds), Connectionist-Symbolic Integration:
From Unified to Hybrid Approaches, Lawrence Erlbaum, 1997.

[9] G. Towell and J. Shavlik, ‘Knowledge-Based Artificial Neural
Networks’, Artificial Intelligence, 70(1-2), 119-165, (1994).

[10] S. Wermter and R. Sun (eds), Hybrid Neural Systems. Springer-
Verlag, Heidelberg, 2000.

