

Published in the Data & Knowledge Engineering 21 (1997) 253-280.

 Copyright 1997, Elsevier Science B.V. All rights reserved.

Handling Inheritance in

a System Integrating Logic in Objects

Ioannis Hatzilygeroudis*
Dept. of Computer Engineering & Informatics

School of Enginering, University of Patras
26500 Patras, Greece

&
Computer Technology Institute

P.O. Box 1122, 26110 Patras, Greece

email: ihatz@cti.gr
fax: +30-61-991909

Han Reichgelt

Dept. of Computer Science
University of the West Indies
Mona, Kingston 7, Jamaica

email: han@uwimona.edu.jm

Abstract

The inheritance mechanism of SILO, a system integrating a many-sorted logic within an

object-based framework, is presented. In order to be adequate for knowledge representation,

it comprises two components, a hardwired and a user-definable. Due to use of typed (sorted)

terms, a variety of specialisation types between logical formulas (axioms) are introduced and

defined. Thus, the hardwired component is able to represent a variety of

inheritance/specialisation relations between objects. The notion of a conflict is defined and

conflict detection theorems are introduced. Also, consequence retraction is introduced and

used alongside attribute/predicate overriding to resolve conflicts. The user-definable

component consists of a number of user definable functions, called meta-functions, which

are able to implement both global and local inheritance control. It is based on a partial

reflection meta-level architecture.

Keywords: knowledge representation, objects, many-sorted logic, integrated system, logical

formulas inheritance, specialisation types, inheritance control.

1. Introduction

SILO is a general purpose hybrid knowledge representation language/system

integrating logic in objects [10, 11]. A distinguishing feature of SILO is that it gives

* Corresponding author.

2

pre-eminence to objects, not to logic. A first-order many-sorted logic is used within an

object-based framework, where objects are distinguished in classes and instances and

are organised in a hierarchy that allows for multiple inheritance. Logic is used to

represent the slots and methods associated with an object. Consequently, inheritance

becomes a process of inheriting logical expressions from the ancestor(s) of an object.

Thus, inheritance remains a fundamental mechanism of SILO, as in most object-based

systems.

Most of the systems that combine logic and objects are extensions of the logic

programming paradigm, that is they give pre-eminence to logic and consider the

combination from the programming point of view rather than that of knowledge

representation (e.g. [7, 8, 14, 17]). Typically, these systems amount to implementing

an object-oriented programming language in a logic programming language, just as

many of the (early) Integrated Artificial Intelligence Programming Environments,

such as LOOPS [2] and KEE [6], included an object-oriented programming language

implemented in the underlying functional programming language. Since the

programming point of view mainly aims at representational rigidity rather than

representational flexibility, most of the existing systems have a restricted and fixed

inheritance mechanism which is quite inflexible, hence inadequate for knowledge

representation. Knowledge representation requires the ability to be declarative and

flexible, which is not offered by existing object-oriented approaches. For example, the

class-instance model of object-oriented languages is too inflexible to cover all types of

specialisation used in knowledge representation [10].

So, an inheritance mechanism, in order to be adequate for knowledge

representation, should be able to implement/recognise a wide variety of possible

specialisations between a class and its subclasses or a class and its instances.

However, there seems to be no hardwired inheritance mechanism that satisfies this

requirement in a multiple inheritance system. This is mainly due to difficulties

concerning representation of domain-dependent specialisations and determination of

the inheritance path [5, 19]. To overcome these difficulties, SILO, apart from a rich

3

hardwired inheritance component, provides a user-definable inheritance component

for controlling inheritance, using a meta-level architecture.

In this paper, the inheritance mechanism of SILO is mainly presented. The outline

of the paper is as follows. Section 2 presents how knowledge is structured in SILO

both globally and locally. In Section 3, the basics of the domain knowledge

representation in SILO are presented. Section 4 deals with the hardwired inheritance

component. Section 5 describes how inheritance control is achieved in the user-

definable inheritance component. Section 6 discusses related work and, finally,

Section 7 concludes.

2. Structuring Knowledge in SILO

2.1 Object structure

Two types of objects are distinguished in SILO. An instance-object (or instance)

contains knowledge about an individual concept. A class-object (or class) contains

knowledge related to a generic concept. Any object in SILO is described via a set of

attributes/predicates (see Section 3) and consists of three parts: structure-part,

knowledge-part and control-part. The structure-part of an object accommodates

knowledge about its hierarchical relations as well as its attributes/predicates. The

knowledge-part of an object includes knowledge for deducing values for its

attributes/predicates. While the structure-part and the knowledge-part of an object

concern domain knowledge, its control-part concerns control knowledge, that is

knowledge about how to use domain knowledge, often called meta-knowledge [1, 28].

Control knowledge refers to both deduction and inheritance.

2.2 The specialisation/inheritance model

Objects in SILO are organised in a hierarchy which can be graphically represented

as a directed acyclic graph (see e.g. [23 Ch.6] for the basic terminology on graphs)

whose nodes represent objects with the object object as its root (see Fig.1), in

common with most object-oriented languages [19]. Instances are terminal nodes in a

hierarchy.

4

Each class, except object, is an immediate subclass of one or more classes higher

up, called its immediate superclass(es). The link between a class and an immediate

subclass of it represents a specialisation/inheritance relation, called an immediate-

subclass-of relation. This means that an immediate subclass can differentiate itself

from its immediate superclass(es) by a number of ways (see Section 4). An immediate

subclass can have new attributes/predicates defined in it. We further define the

subclass-of relation as the transitive closure of the 'immediate-subclass-of' relation.

object

animal

mammal pet

human

womanpolitician

man

dog

w1 w2m2 m3 d1 d2

subclass-of

instance-of

dad-mimic

m1

canary

c1 c2

Fig.1 A partial SILO hierarchy

A class, apart from subclasses, can also have instances attached to it (e.g. man

Fig.1). Classes that have only instances attached to them are called terminal classes

(e.g. dog in Fig.1). There is no terminal class with no instances attached to it. An

instance may belong to more than one class. The link between a class and an instance

5

of it represents a restricted specialisation/inheritance relation, called an instance-of

relation. It is restricted in the sense that an instance cannot have new

attributes/predicates defined within itself. Furthermore, instances cannot be further

specialised.

So, the specialisation/inheritance model of SILO is more flexible than that of

standard class-based systems, which is based on the set theory, and a bit less flexible

than that of standard frame-based systems, which is based on the prototype theory (see

[19 Ch.7]). For example, standard class-based systems do not allow for new methods

to be defined within instances, whereas SILO does. On the other hand, standard

frame-based systems allow instances to have new slots (attributes) defined in them,

whereas SILO doesn't. However, SILO retains the declarative structure of frame-based

systems. Therefore, it could be said that SILO's specialisation/inheritance model is

based on a restricted prototype theory.

Any SILO hierarchy is defined by the user, by explicitly declaring the 'immediate-

subclass-of' and the 'instance-of' relations between objects. In Fig.1, an incomplete1

hierarchy of objects, with the links to be defined by the user, is depicted.

2.3 Hierarchy issues

We use Ci and Oi to represent class and instance symbols respectively. We also use

"<<" and "<" to represent the 'subclass-of' and the 'instance-of' relations respectively.

So, Cj << Ci means that Cj is a subclass of Ci or equivalently that Ci is a superclass of

Cj. For example, in the hierarchy of Fig.1, human << mammal, mammal << animal

and human << animal; mammal is an immediate subclass of animal too. Also, Oj <

Ci means that Oj is an instance of Ci or equivalently that Ci is a class of Oj. For

example, m3 < man, m3 < politician and w2 < woman.

In a hierarchy, a subgraph that has a class Ci as its root is called the Ci class graph

(or simply the Ci graph). The set of the instances that belong to the Ci graph is called

the potential of Ci, represented by I(Ci). Obviously, each class in the Ci graph is a

1 "incomplete" and "partial" mean that there are other objects (classes or instances) not depicted in the
figure, for the sake of simplicity.

6

subclass of Ci and the corresponding class graph a subgraph of the Ci graph. Two

classes Ci, Cj are (declared to be) disjoint, if they have no common instances, that is

I(Ci) ∩ I(Cj) = ∅.

For example, in Fig.1, the potential of human is I(human) = {m1, m2, m3, w1, w2}.

Also, the mammal and pet class graphs are subgraphs of the animal class graph. man

has two instances, {m2, m3}, and a subclass, dad-mimic. Furthermore, man and

woman are (declared to be) disjoint.

The following hypothesis is considered to be true of any (complete) SILO hierarchy:

There are no two classes belonging to different branches of a class graph such

that the potential of the one is a subset of the potential of the other.

This is a conceptual requirement necessary for proving Lemma1 below, which is in

turn necessary for proving Lemma 2 (Section 4.2.1) and Theorem 1 (Section 4.3.2).

Lemma 1. I(Ck) ⊆ I(Cm) iff Ck << Cm.

Proof.

 <= Since Ck << Cm, Ck lies on a branch of the Cm class graph, hence the

Ck graph is a subgraph of the Cm graph. Consequently, the potential of the

Ck graph is a subset of the potential of the Cm graph, that is I(Ck) ⊆ I(Cm).

 => Since I(Ck) ⊆ I(Cm), Ck is on the same branch as Cm (above

hypothesis). Consequently, Ck << Cm.

The practical implication of Lemma 1 and the above hypothesis is that there should

not be an implicit (: not declared explicitly by the user) subclass of a class on a

different branch. This is, of course, responsibility of the user, since detection of such a

situation by the system would be impractical.

3. Domain Knowledge Representation

An integrated language is used for the description of the domain knowledge in the

structure-part and the knowledge-part of an object that can be considered as a form of

a many-sorted logic [4]. It consists of two component languages the basics of which

are described in the following (for a more detailed description see [11, 12]).

7

3.1 Structure Declaring Language

The one component language, called structure declaring language (SDL), concerns

the structure-part of an object and consists of two main types of declarations. The

first, link declarations, comprises declarations of the object's (super)classes,

subclasses and/or instances as well as declarations of which sibling classes of the

(class) object are disjoint with it.

The second, attribute declarations, represent restrictions on the values of the

object's attributes.

Definition 1 (Attribute declaration). An attribute declaration is an
expression of the form ((pi

n C1 ... Cn) (n1 n2)), where pi
n is an n-place

attribute symbol (n ≥ 0), C1,...,Cn are class symbols and n1, n2 are optional
positive integers.

In Definition 1, class symbols represent the types of the corresponding component

values (see below) of the attribute, while the two integers represent the minimum and

maximum number of values the attribute can take. If one of n1, n2 is to be left

unspecified, an '!' is used in its place.

In general, an attribute is an n-place attribute (n ≥ 0), that is a value of it is an n-

tuple consisting of n component values. If n = 0 it is a degenerate attribute, that is an

attribute with no value, if n = 1 it is a simple attribute, otherwise it is a composite

attribute. Attributes are distinguished in single-valued and multi-valued attributes. An

attribute is single-valued if it is allowed to take only one n-tuple as its value,

otherwise it is multi-valued. Obviously, n1 = n2 = 1 declares a single-valued attribute.

For example, the declaration "((member man) (2 5))" in class small-team

concerns the multi-valued attribute 'member' and denotes that "the members of a small

team are at least two, at most five and are men".

SDL corresponds to the description of the signature(s) in a many-sorted logic [4].

3.2 Message Passing Logic

The other component language is used for the description of the knowledge-part of

an object and is a variant of classical first-order predicate calculus (FOPC), called

8

message passing logic (MPL). Cambridge Polish notation is used with as connectives

{~ , & , V , =>} and quantifiers {forall , exists} (see the definitions below and also [9

Ch.2, 24 Ch.3] for the basic terminology of FOPC).

There are two prime types of terms in MPL, namely constants and variables2. A

constant is an instance symbol, that represents an individual concept. Variables are

actually typed (or sorted) variables, that is variables whose range of values is

restricted either explicitly or implicitly. We use vi to represent variable symbols. In

MPL, a variable symbol has '?' as its first character (e.g. ?x). An explicitly typed

variable has the form

vi:Ci

where the class symbol Ci represents its type. Obviously, the range of values of vi is

equal to the potential of Ci, I(Ci). An implicitly typed variable vi is considered to be

either of the same type as the explicitly typed variable with the same symbol in the

same formula, if any, or of type 'object'. Finally, there is the special variable '?self '

which has a special semantics, specified in the subsequent sections.

Definition 2. (MPL term). An MPL term is either a constant or a variable
(implicitly or explicitly typed) or the special variable '?self '.

Definition 3. (MPL atom). An MPL atomic formula (or atom) is an
expression of the form (pi

n+1 t1 ... tn to), where pi
n+1 is an (n+1)-place

predicate symbol (n ≥ 0) and t1,..., tn, to its arguments, that are terms.

The last argument to always denotes the object the atom refers to and is called the

object argument. The predicate symbol pi
n+1 represents an attribute of the object

denoted by the object argument. That is, for any n-place attribute there is a

homonymous (n+1)-place predicate and vice versa. The terms t1, ... , tn represent

component values of the predicate's homonymous attribute and are called value

arguments. In the same way as with attributes, we distinguish between single-valued

2There is actually another type of terms, called evaluable terms, which however are only used for

representation conciseness reasons. MPL formulas containing evaluable terms are internally translated
to equivalent ones with only constants and variables (see [12]).

9

and multi-valued predicates. So, "attribute" and "predicate" are treated as almost

identical notions throughout the paper.

MPL does not directly support functions, but it does it indirectly (see [12]).

Definition 4. (MPL formula). A well-formed MPL formula (wff) is defined
as follows:

(1) an atom is a wff.
(2) if f is a wff, (~ f) is also a wff.
(3) if f1 and f2 are wffs, (V f1 f2), (& f1 f2) and (=> f1 f2) are also wffs.
(4) if f is a wff and vi is a (free) variable in f, ((forall vi) f) and ((exists vi) f)
 are also wffs.
(5) nothing else is a wff.

A variable is free if it is not in the scope of any quantifier.

3.3 MPL Clausal Form

Because SILO uses a resolution-based reasoner [11, 12], MPL formulas are

converted into MPL clauses, called axioms. Axioms are stored in the knowledge-part

of an object. An axiom ai is represented as a set of MPL literals {li1, li2, ... , lin} with

an implicit disjunction between them. A literal is either an atom (positive literal) or a

negated atom (negative literal). A unit axiom is an axiom consisting of exactly one

literal.

Definition 5 (Self-literal). A literal is a self-literal if its object argument is
either '?self ' or the symbol of the object it is stored in.

So, a self-literal concerns knowledge related to the object it is stored in.

Due to typed terms, apart from normal Skolem terms, typed Skolem terms (constants

and functions) are also resulted in the MPL clausal form (see [12] for details). An

MPL literal is a ground literal if its arguments are ground terms. Ground terms are:

constants, Skolem constants, Skolem functions with ground arguments and the special

variable '?self '.

There are two types of axioms in the knowledge-part of an object, namely slot-

axioms and method-axioms. A slot-axiom is a unit axiom consisting of a self-literal.

Any other axiom is a method-axiom. For example, ((num-of-legs 2 ?self)) in human

10

and ((~ (eats ?x:animal-product john))) in john are slot-axioms, whereas ((lives-in ?x

?self) (~ (works-in ?x:city ?self))) in human and ((lives-in ?y john) (~ (father ?x

john)) (~ (lives-in ?y:city ?x))) in john are method-axioms. Slot-axioms correspond

to slot-value pairs and method-axioms to methods of standard class-based languages

or if-needed procedures of standard frame-based languages.

Any axiom stored in an object refers to attributes/predicates of the object. Thus, we

introduce the following definitions, where, for the sake of simplicity, we omit arity

numbers from attribute/predicate symbols.

Definition 6a (Positive Reference/Axiom). An axiom a positively refers to
an attribute/predicate p, denoted by a[p]+, if it contains at least a positive
self-literal of the attribute/predicate. Axiom a is called a positive axiom.

Definition 6b (Negative Reference/Axiom). An axiom a negatively refers to
an attribute/predicate p, denoted by a[p]-, if all its self-literals are negative
literals of the attribute/predicate. Axiom a is called a negative axiom.

To express the fact that an axiom a is either positive or negative, we use a[p].

In SILO, an attribute/predicate definition consists of an attribute declaration and

one or more axioms that refer to that attribute/predicate. Each axiom represents one or

more attribute/predicate values either positive or negative, depending on whether it is

positive or negative. For example, ((eats ?x:vegetable ?self)) and ((lives-in ?x ?self)

(~ (works-in ?x:city ?self))) represent a number of positive values for 'eats' and 'lives-

in', whereas the negative axioms ((~ (eats ?x:meat ?self))) and ((~ (plays ?x mike)) (~

(likes ?x:leisure-thing mike))) a number of negative values for 'eats' and 'plays'. So,

one or more positive axioms with the associated attribute declaration constitute a

positive definition for the attribute/predicate. Correspondingly, one or more negative

axioms with the associated attribute declaration constitute a negative definition for the

attribute/predicate.

3.4 Reasoning and message passing

Reasoning in SILO is closely related to message passing. A resolution based

reasoning process starts off by sending a message (query) to an object and takes place

11

in the context of that object. The context of an object is defined as its local theory plus

the theories it can inherit from objects higher up. The local theory LOi
 of an object Oi

consists of the axioms (clauses) stored in itself. When a query (theorem) is sent to an

object, the system first tries to answer (prove) it using the object's local theory. If this

fails, then the object extends its theory by successively inheriting axioms from its

(super)classes and new proof attempts are made. Due to possible message passings

during resolution, an (initial) reasoning process in the context of an object may trigger

a number of other reasoning (sub)processes in the contexts of other objects. The

object Oc in whose context reasoning is currently taking place is called the current

object. The available axioms at any time for proving a theorem in the context of Oc

constitute the current theory Sc. The special variable '?self ' is always bound to the

symbol of the current object.

Message passing is achieved via message-literals. A message-literal is a literal in a

method-axiom whose object argument denotes an object different from the object the

axiom is stored in. A message-literal, in contrast to a self-literal, concerns knowledge

related to an object different from the object it is stored in. For example, (~ (lives-in

?y ?x)) in the method-axiom ((lives-in ?y john) (~ (father ?x john)) (~ (lives-in ?y

?x))) stored in john is a message literal, since its object argument is not "john", but a

variable which will be eventually bound to an object symbol, say "paul", that

represents the father of John. Message passing to paul then means a theorem proving

request in the context of paul with the literal as the (negated) theorem to be proved.

(For a fuller description of reasoning and message passing in SILO see [11, 12]).

4. Hardwired inheritance

4.1 Introductory issues

We distinguish two aspects of inheritance. The first, called content inheritance,

concerns which part of the domain knowledge of an object is inherited. The second,

called inheritance order, concerns the order in which the classes/superclasses of an

instance or a class with multiple parents are visited for inheritance. We further

distinguish two aspects of content inheritance. The first is called complete inheritance

12

and concerns inheritance of the attribute declarations and the axioms themselves. The

second is called atomic inheritance and concerns inheritance of the atomic

consequences of the axioms. Thus, while complete inheritance refers to all the

consequences of axioms, atomic inheritance refers to their atomic consequences.

Although both aspects of content inheritance are useful to knowledge representation,

existing combinations of logic and objects, except [21], address either complete

inheritance (e.g. [7, 15, 18]) or atomic inheritance (e.g. [20]), but not both as SILO

does.

Apart from various inheritance aspects, there are also a number of knowledge

specialisation types (or specialisations) required for knowledge representation. The

more specialisations an inheritance mechanism is able to support the more flexible a

system is in representing differentiations between objects. This is a key factor in

knowledge representation, in contrast to programming. The specialisation types

supported by SILO are outlined below, where by attribute/predicate values we refer to

both positive and negative ones.

(a) addition: when definition of a new attribute/predicate, i.e. a new attribute

declaration and/or axiom(s), is introduced.

(b) extension: when the values of a multi-valued attribute/predicate are

extended by a number of values.

(b.1) pure extension: when the extending values have none in common

with the old ones or

(b.2) impure extension: when the extending values have common values

with the old ones.

(b.2.1) including extension: when the extending values are a

superset of the old ones.

(b.2.2) overlapping extension: when the extending values overlap

with the old ones.

(c) substitution: when a new definition of an attribute/predicate is introduced

as a substitute for the old one.

13

(d) refinement: when the values of a multi-valued attribute/predicate are

restricted to a subset of the old ones.

(e) exception: when one or more values of an attribute/predicate are

excluded.

(e.1) full exception: when all of the values are excluded.

(e.2) partial exception: when a subset of the values are excluded.

As it is clear, specialisation types refer to attributes/predicates, not to objects. So, a

specialisation/inheritance relation, e.g. a subclass-of relation, is composed of a

variety of specialisations between the attributes/predicates, hence the axioms, of the

two involved classes. In the case of an instance-of relation, because of the restricted

specialisation employed, addition is not applicable, as instances cannot have new

attributes/predicates defined in them. Existing systems do not address all of the above

specialisation types. They do not usually provide ways of implementing one or more

of extension, refinement and exception of knowledge. For example, the system in

[21], although supports complete and atomic inheritance, it does not provide direct

ways for representing refinements and partial exceptions.

Typically, in a multiple inheritance system, an instance/class inherits knowledge

from all of its classes/superclasses. Multiple inheritance causes no problems at all as

long as there is no conflicting knowledge, either within an instance/class and a

class/superclass of it or within different classes/superclasses of it. This is the case

when e.g. addition or extension of attributes/predicates are only needed. Then, an

instance/class inherits all the knowledge from within its classes/superclasses.

However, when e.g. substitution and/or refinement and/or exception of knowledge are

also required, conflicts may be created and problems arise. In this case, in order to

resolve conflicts, the element (e.g. axiom) with more specific information invalidates

the one(s) with less specific information. So, the problem is two-fold: how to detect

conflicting knowledge and how to determine its most specific occurrence, that is the

one residing lower down in the hierarchy.

14

In the following subsections we address these issues. Our aim is to a) provide

formal definitions for the specialisation types specified above and the notion of a

conflict, and b) formalise implicit, natural detection rules for conflicts, so that no extra

constructs are required in the language.

4.2 Specialisation types

4.2.1 Basic notions

In this subsection, we introduce some notions and a lemma to be used in the next

subsection. In the following, by "representation element" we mean either a term t or a

literal l or an axiom a. G(x) represents the set of the ground instances (or

instantiations) of the representation element x. So, G(t) = {t} if t is not a variable, i.e.

it is a constant or a Skolem term, and G(t) = I(C) if t is a variable of type C.

For any term, at least one type can be determined. Determination of the type(s) of a

term t is based on the following:

 • if t is a constant and t < C, then C is a type of t.

 • if t is a typed term of type C, then C is the type of t.

Obviously, if t is a typed Skolem term of type C, then t < C.

The following notions are introduced here.

Definition 7 (Inclusion). A representation element xl includes a

representation element xh if G(xl) ⊇ G(xh).

Definition 8 (Overlap). A representation element xl overlaps with a

representation element xh if G(xh) ⊄ G(xl), G(xl) ⊄ G(xh) and G(xl) ∩ G(xh)

≠ ∅.

Also, the following simple lemma is proved.

Lemma 2. {tk} ⊆ I(Cm) iff either (a) tk < Cm or (b) ∃ Ck: tk < Ck and Ck <<

Cm .

15

Proof.

 <= (a) If tk < Cm, then {tk} ⊆ I(Cm). (b) If tk < Cm and Ck << Cm , then

{tk} ⊆ I(Ck) ⊆ I(Cm) (Lemma 1, Section 2.3).

 => Since {tk} ⊆ I(Cm), tk is a constant, that represents an instance. There

are two cases. (a) tk < Cm. (b) tk is not an instance of Cm. Then, since tk

belongs to the Cm graph, there is a class Ck that belongs to the Cm graph

such that tk < Ck. Because Ck belongs to the Cm graph, Ck << Cm.

4.2.2 Definitions

In this subsection, we give definitions for the specialisation types between axioms

provided by SILO. They deal with full MPL and only one (Def 12) is restricted to

positive axioms that refer to only one attribute. They are based on an axiom-to-axiom

model which is closer to the slot-to-slot model of frame-based systems.

Due to the large number of possible specialisation cases between axioms, it is

impractical or even impossible to construct a system that is able to represent any

possible case of any specialisation in a hardwired and implicit way. So, the definitions

provided may not cover all possible cases. An effort to overcome this would lead

either to introduction of several extra constructs and/or to very complicated, hence

incomprehensible, definitions and expensive implementation. To avoid them, explicit

user-based means are employed in SILO. This is the motivation behind the user-

definable part of the inheritance mechanism (see Section 5).

In the following, by ah we denote an axiom higher up and by al an axiom lower

down in a hierarchy that belong to the context of the current object Oc. That is, al

belongs to the current theory Sc and ah is an axiom higher up considered for

inheritance. Also, H(ai) represents the set of the self-literals of ai. Finally, by ps, pm we

represent a single-valued, a multi-valued attribute/predicate respectively.

Addition is the natural introduction of new knowledge in an object and needs no

definition as well as no detection.

Extension concerns only multi-valued attributes/predicates. Various types of

extension are defined as follows:

16

Definition 9 (Pure Extension). An axiom al is a pure extension of an axiom
ah if ah[pm]+, al[pm]+ and G(ah) ∩ G(al) = ∅ (positive extension) or ah[pm]-,
al[pm]- and G(ah) ∩ G(al) = ∅ (negative extension).

Definition 10 (Including Extension). An axiom al is a including extension of
an axiom ah, where al ≠ ah, if ah[pm]+, al[pm]+ and al includes ah (positive
extension), or ah[pm]-, al[pm]- and al includes ah (negative extension).

Definition 11 (Overlapping Extension). An axiom al is an overlapping
extension of an axiom ah if ah[pm]+, al[pm]+ and al overlaps with ah (positive
extension), or ah[pm]-, al[pm]- and al overlaps with ah (negative extension).

Substitution is defined as follows:

Definition 12 (Substitution). An axiom al is a substitution for an axiom ah if
ah[ps]+, al[ps]+ and ah ≠ al.

Definition 12 is based on the fact that there cannot be more than one positive

definition of a single-valued attribute/predicate in the context of an object. This is not

the case for negative definitions. Also, Definition 12 concerns positive axioms that

refer (Def 6a) to only one attribute. It is not easy to extend it to more that one attribute

or to multi-valued attributes/predicates in an implicit way. These are substitution cases

to be handled by the user-definable part of the inheritance mechanism.

Refinement is meaningful only for multi-valued attributes/predicates and is defined

as follows:

Definition 13 (Refinement). An axiom al is a refinement of an axiom ah,
where al ≠ ah, if ah[pm]+, al[pm]+ and ah includes al (positive refinement) or
if ah[pm]-, al[pm]- and ah includes al (negative refinement).

In SILO, we interpret negation as a means of expressing exceptions, hence the

notion of exception is related to that of logical inconsistency. So, Sc includes an

exception to an axiom ah if and only if Sc ∪ {ah} is inconsistent, or in other words if

(~ah) belongs to or can be proved from Sc, symbolically Sc Ã (~ah). However, given

the exponential explosion of the resolution process and the semidecidability of logic,

this may lead to prohibitively expensive computations. Therefore, we introduce some

shortcuts based on an axiom-to-axiom exception model, which is closer to the slot-to-

slot exception model of the standard object-based systems. These shortcuts are only

17

used for inheritance purposes. The reasoning process itself is based on the resolution

refutation procedure [12].

We define the two types of exception as follows.

Definition 14 (Full Exception). An axiom al is a full exception to (or fully
inconsistent with) an axiom ah, if ∃ lli ∈ H(al), lhi ∈ H(ah), i=1..n,: lli
includes (~lhi), i=1..n, and (al - {ll1,.., lln}) includes (ah - {lh1,.., lhn}).

In the case of unit axioms (i.e. slot-axioms) the above definition reduces to the

following:

Definition 14a (Unit Full Exception). A unit axiom al is a full exception to
(or fully inconsistent with) a unit axiom ah if al includes (~ah).

In contrast to full exception, that concerns both single- and multi-valued

attributes/predicates, partial exception concerns only multi-valued

attributes/predicates:

Definition 15 (Partial Exception). An axiom al is a partial exception to (or

partially inconsistent with) an axiom ah, if ah[pm], al[pm] and ∃ lli ∈ H(al),

lhi ∈ H(ah), i=1..n,: lli overlaps with (~lhi), i=1..n, and (al - {ll1,.., lln})

overlaps with (ah - {lh1,.., lhn}).

In the case of unit axioms (i.e. slot-axioms) the above definition reduces to the

following:

Definition 15a (Unit Partial Exception). A unit axiom al is a partial

exception to (or partially inconsistent with) a unit axiom ah, if ah[pm], al[pm]

and al overlaps with (~ah).

4.3 Conflicts and complete inheritance

4.3.1 Conflicting and redundant axioms

A conflict, from the point of view of complete inheritance, refers to all the

consequences of an axiom. So, we give the following definition of a conflict:

Definition 16 (Conflict). An axiom ah is conflicting with an axiom al if al is
either a substitution for or a refinement of or a full exception to ah.

18

Apart from the notion of conflicting axioms, we also introduce the notion of

redundant axioms. Redundancy is mainly due to including extensions. Thus, we have

the following definition:

Definition 17 (Redundancy). An axiom ah is redundant if there is an axiom
al that is either an including extension of or equal to ah.

As far as attribute declarations are concerned, we consider that any attribute

declaration lower down is conflicting with any attribute declaration higher up for the

same attribute.

4.3.2 Detection theorems

From Definitions 16 and 17, it is clear that detection of conflicting and redundant

axioms amounts to detection of the corresponding specialisations between axioms.

Detection of substitution is straightforward from its definition. However, detection of

the other specialisations reduces to the detection of the inclusion relation between

axioms or literals of axioms. In this subsection, a few theorems that aim at the

detection of the inclusion relation are presented.

First, we prove a theorem that is the basis for terms inclusion detection, which in

turn is the basis for literals and that for axioms inclusion detection.

Theorem 1 (Terms Inclusion). A term tl of type Cl includes a term th of type
Ch iff (a) Ch << Cl or (b) th < Cl or (c) th ≡ tl .

Proof.

 <= Since tl is a variable, G(tl) = I(Cl). In (a), Ch << Cl => I(Ch) ⊆ I(Cl)
(Lemma 1). If th is a variable, G(th) = I(Ch), hence G(th) ⊆ G(tl). If th is not a
variable, then th < Ch which implies G(th) = {th} ⊆ I(Ch) (Lemma 2), hence
again G(th) ⊆ G(tl). In (b), th < Cl => G(th) ⊆ I(Cl) (Lemma 2), hence G(th)
⊆ G(tl).
 => Since tl includes th, G(th) ⊆ G(tl). There are two possible cases for
each of tl, th : to be or not to be a variable. (1) tl is a variable. (1.1) th is also
a variable; then G(th) = I(Ch) ⊆ G(tl) = I(Cl) which implies Ch << Cl
(Lemma 1). (1.2) th is not a variable; then G(th) = {th} ⊆ G(tl) = I(Cl) which
implies either th < Cl or Ch << Cl (Lemma 2). (2) tl is not a variable. (2.1) th
is a variable; then G(th) ⊆ G(tl) = {tl} which, given that G(th) ≠ ∅, implies

19

G(th) = I(Ch) = {tl}, which in turn implies th < Cl . (2.2) th is not a variable;
then G(th) = {th} ⊆ G(tl) = {tl} which implies th ≡ tl .

The following two theorems concern literals and axioms inclusion. Their proofs are

omitted, as obvious.

Theorem 2 (Literals Inclusion). A literal ll includes a literal lh iff they have
the same sign, the same predicate/attribute and the value arguments of ll
include the corresponding value arguments of lh .

Theorem 3 (Axioms Inclusion). An axiom al includes an axiom ah iff the
literals of al include the literals of ah .

4.3.3 Attribute/predicate overriding

After detection of conflicting or redundant axioms, attribute/predicate overriding is

employed in SILO, as in object-based systems [26, 19]. Overriding in SILO demands

that an axiom al lower down overrides any conflicting or redundant axiom ah stored

higher up in the hierarchy. The same holds for attribute declarations.

4.3.4 Examples

In this subsection, we give a number of examples illustrating realisation and

detection of various specialisations. The examples refer to Fig.2, where human is a

subclass of mammal and john, mike are instances of human, and only necessary

knowledge is presented.

So, ((son man)) and ((lives-in ?x ?self) (~ (works-in ?x ?self))) in human are

additions of knowledge.

The slot-axiom ((likes ?x:leisure-thing john)) in john is a positive including

extension to ((likes ?x:game ?self)) in human (Def. 10), because they are not equal,

refer to the same multi-valued attribute 'likes' and the first includes the second, since

"?self" is considered to be bound to "john" and is given that leisure-thing

includes game (game << leisure-thing). So, ((likes ?x:game ?self)) is redundant

(Def. 17). In contrast, ((eats ?x:meat ?self)) in human is a positive pure extension to

((eats ?x:vegetable ?self)) in mammal (Def. 9). In the later case there is no redundancy,

because G(ah) ∩ G(al) = ∅, given that vegetable and meat are disjoint classes.

20

Furthermore, ((~ (trusts ?x:woman mike))) in mike is a negative overlapping

extension to ((~ (trusts ?x:politician ?self))) in human, because they are negative

axioms and the first overlaps with the second (Def. 11), given that politician and

woman are not disjoint classes, that is they may have common instances.

 mammal
 ((num-of-legs 4 ?self))
 ((likes swimming ?self))
 ((eats ?x:vegetable ?self))

 human
 attributes
 ((son man))
 axioms
 ((num-of-legs 2 ?self))
 ((likes ?x:game ?self))
 ((eats ?x:meat ?self))
 ((~ (trusts ?x:politician ?self)))
 ((lives-in ?x ?self) (~ (works-in ?x ?self))
 ((plays ?x ?self) (~ (likes ?x:game ?self)))
 ((origin asia ?self) (origin africa ?self)
 (~ (colour dark ?self)))

 john mike
 attributes attributes
 ((son doctor) (1 1)) ((son man) (2 !))
 axioms axioms
 ((likes ?x:leis-thing john)) ((eats beef mike))
 ((origin europe john)) ((~ (likes swimming mike)))
 ((~ (eats ?x:anim-prod john))) ((~ (plays ?x mike)) (~ (likes ?x:leis-thing mike)))
 ((~ (trusts ?x:parl-memb john))) ((~ (trusts ?x:woman mike)))
 ((plays ?x john) ((lives-in ?y mike) (~ (father ?x mike))
 (~ (likes ?x:table-game john))) (~ (lives-in ?y:city ?x)))

Fig.2 Knowledge representation in SILO: Example 1

The slot-axiom ((num-of-legs 2 ?self)) in human is a substitution for ((num-of-legs

4 ?self)) in mammal (Def. 12), because they positively refer to the same single-valued

attribute 'num-of-legs'. Also, the method-axioms ((lives-in ?y mike) (~ (father ?x

mike)) (~ (lives-in ?y:city ?x))) in mike and ((origin europe john)) in john are

substitutions for ((lives-in ?x ?self) (~ (works-in ?x:city ?self)) and ((origin asia ?self)

(origin africa ?self) (~ (colour dark ?self))) in human respectively, because they

positively refer to the same single-valued attribute 'lives-in' and 'origin' respectively.

21

Additionally, the slot-axiom ((eats beef mike)) in mike is a positive refinement of

((eats ?x:meat ?self)) in human (Def. 13), because they are not equal, positively refer

to the same attribute and the second includes the first, since their literals have the

same predicate, the same sign and is given that meat includes beef (beef < meat).

Also, the method-axiom ((plays ?x john) (~ (likes ?x:table-game john)) in john is a

positive refinement of ((plays ?x ?self) (~ (likes ?x:game ?self)) in human, because

they are not equal, positively refer to the same attribute 'plays' and the second includes

the first, as their first literals are equal ("?self" is considered to be bound to "john")

and (~ (likes ?x:game ?self) includes (~ (likes ?x:table-game john) given that game

includes table-game (table-game << game). On the other hand, (~ (trusts

?x:parliament-member john)) in john is a negative refinement of (~ (trusts

?x:politician ?self)) in human, because they are not equal, refer to the same attribute

and the second includes the first, given that politician includes parliament-

member.

The slot-axiom ((~ (likes swimming mike))) in mike is a unit full exception to

((likes swimming ?self)) in mammal (Def. 14a), because (~ (likes swimming mike)) is

equal to (~ (likes swimming ?self)) ("?self" is considered to be bound to "mike").

Also, ((~ (eats ?x:animal-product john))) in john is a unit full exception to ((eats

?x:meat ?self)) in human, because the first includes the negation of the second, given

that animal-product includes meat. Also, ((~ (plays ?x mike)) (~ (likes ?x:leisure-

thing mike))) in mike is a full exception to ((plays ?x ?self) (~ (likes ?x:game ?self)))

in human (Def. 14), given that leisure-thing includes game, because (~ (plays ?x

mike)) is equal to (~ (plays ?x ?self)) and (~ (likes ?x:leisure-thing mike)) includes (~

(likes ?x:game ?self)).

Finally, the attribute declarations ((son doctor) (1 1)) in john and ((son man) (2 !))

in mike are conflicting with ((son man)) in human, because they refer to the same

attribute/predicate.

4.4 Atomic inheritance and consequence retraction

22

Overriding as well as the previously discussed conflict detection techniques concern

complete inheritance. They are not appropriate to deal with cases where atomic

inheritance should be considered, that is with cases where not the axioms themselves,

but some of their atomic consequences should be only inherited. Such cases are those

concerning partial exceptions/inconsistencies (e.g. like the ones described by Def. 15).

It is easy to see from Definitions 14 and 15 that if al is a partial exception to ah, it is

not an exception to ah. So, al and ah are not conflicting, according to Def. 16,

although they have conflicting ground instantiations, and they are both inherited. This,

however, may lead to inconsistent answers (atomic consequences). Also, it is easy to

see that overriding cannot solve the problem without loosing knowledge and reducing

specialisation flexibility.

We distinguish two categories of partial inconsistencies. The first category includes

self-context partial inconsistencies, that is cases where the involved axioms consist of

only self-literals. For example, in the partial hierarchy of Fig.3 (where dad-mimic is

a subclass of man, paul is an instance of man and peter, jacob instances of dad-

mimic), ((~ (trusts ?x:politician paul))) in paul is partially inconsistent with ((trusts

?x:man ?self)) in man, since politician and man are not disjoint, that they may

have common instances (e.g. m3 in Fig.1). This means that they have conflicting

ground instantiations. Therefore, the answer to both queries (trusts m3 paul) and (~

(trusts m3 paul)) will be T (true).

The second category includes inter-context partial inconsistencies, that is cases

where either of the involved axioms has at least one message literal. In these cases, in

contrast to self-context ones, the atomic consequences are due to knowledge (axioms)

belonging to context(s) of object(s) other from the current which is(are) accessed only

via message passing. For example, the method-axiom ((plays ?y ?self) (~ (father ?x

?self)) (~ (plays ?y ?x))) in dad-mimic (Fig.3) is inherited by peter. Thus, we get

four answers to the query (plays ?x peter), namely (plays football peter), (plays piano

peter), (plays flute peter) and (plays chess peter), due to message passing of the

(message) literal (plays ?y ?x) to paul (since "?x" is eventually bound to "paul" after

23

resolution of (~ (father ?x ?self)))). However, not all of those atomic consequences

(solutions) are acceptable, since Peter does not actually play everything that his father

plays, as it is denoted by the negative axioms stored in peter.

 man
 ((sex male ?self))
 ((trusts ?x:man ?self))

 dad-mimic paul
 ((plays ?y ?self) ((plays football paul))
 (~ (father ?x ?self)) ((plays piano paul))
 (~ (plays ?y ?x))) ((plays flute paul))
 ((plays chess paul))
 ((~ (trusts ?x:politician paul)))

 peter jacob
 ((father paul peter)) ((plays ?x jacob)
 ((~ (plays football peter))) (~ (plays ?x peter)))
 ((~ (plays ?x:wind-instr peter))) ((~ (plays chess jacob))

Fig.3 Knowledge representation in SILO: Example 2

To remedy the above deficiencies, since axiom overriding is not adequate, another

inheritance technique, called consequence retraction is introduced in SILO.

Consequence retraction is very similar to 'solution invalidation', introduced in [21].

We could say that consequence retraction is a generalisation of solution invalidation.

Definition 18 (Consequence Retraction) An atomic consequence öi found

during a reasoning process in the context of an object Oc is retracted if S =

Sc ∪ {öi} is inconsistent, that is (~öi) belongs to Sc or Sc Ã (~öi).

This means that an atomic consequence is retracted if it successfully resolves in Sc,

that is the empty clause is produced. When a message is sent from the current object

Oc (sender) to an object Or (receiver) and an atomic consequence öi is derived within

the context of Or, then öi is retracted if it successfully resolves in Sc.

Using consequence retraction in the above example, the answer to query ((trusts m3

paul)) is F (false), because it resolves with ((~ (trusts ?x:politician paul))) and the

empty clause is produced. Also, the answers to query (plays ?x peter) are only (plays

24

piano peter) and (plays chess peter), because the other two candidate answers are

retracted. More specifically, (plays football peter) is retracted as successfully resolving

with (~ (plays football peter)), and (plays flute peter) as successfully resolving with (~

(plays ?x:wind-instrument peter)), given that flute < wind-instrument. Because

of the same consequences retraction within peter plus retraction of (plays chess

jacob) within jacob, the answer to the query (plays ?x jacob) is only (plays piano

jacob). Notice that not only solutions, but also intermediate atomic consequences are

retracted, in contrast to solution invalidation. Additionally, while consequence

retraction naturally exploits negation in its implementation, solution invalidation uses

extra objects (units) instead [21].

Also, notice that the above axioms create a partial exception situation that cannot be

detected based on Definition 15. This is because it is not able to know in advance

whether what Peter's father plays includes the ones excepted in peter. So,

consequence retraction can handle cases of partial exception that cannot be literally

detected. We can say that consequence retraction is actually a way of implementing

atomic exceptions and thus can cover even cases of full exceptions that cannot be

detected based on the definitions. This makes consequence retraction a very powerful

and general technique.

4.5 Exception by negation and state change

As it is clear so far, negation is used as the means for representing exceptions in

SILO. Thus, any negative axiom (clause) represents either a full exception to another

axiom (Def. 14), which is then overridden, or a partial exception to another axiom

(Def. 15), which is not overridden but its inconsistent atomic consequences are

retracted to restore consistency. We call this representation scheme, introduced here,

exception by negation.

Exception by negation facilitates representation of state changes in problems like

those relating to planning in the blocks world (see e.g. [9 Ch.11]). The state change in

the example of Fig.4 can be represented as in Fig.5, where state2 is a subclass of

state1.

25

The same example is reported in [21] and MULTILOG [18], where 'solution

invalidation' and 'inheritance with exceptions' respectively are employed. In SILO, the

multi-valued predicates 'has-on-table', 'has-on' and 'has-free' are used, instead of the

standard 'on-table', 'on' and 'free', for better readability. The system in [21] uses extra

units (objects), where invalid solutions (facts) are stored. In this way, however, change

state is dynamically/indirectly represented via solution invalidation. That is, all of the

facts in state1 are inherited by state2 and only during reasoning exceptions are

activated. MULTILOG provides a direct representation, where axioms to be excepted

are specified in the specialisation/inheritance relation defined between the two

objects. However, in that case, facts that were changed are not explicitly present in the

objects, as in SILO. In SILO, a history of the changes is kept in the objects.

b

a c a

b

c

state1 state2

Fig.4 A state change in a blocks world.

 state1
 ((has-on-table a ?self))
 ((has-on b a ?self))
 ((has-free b ?self))
 ((has-on-table c ?self))
 ((has-free c ?self))

 state2
 ((has-free a ?self))
 ((has-on b c ?self))
 ((~ (has-free c ?self)))
 ((~ (has-on b a ?self)))

Fig.5 Representation of the state change of Fig.4 in SILO

So, exception by negation can be seen as providing a solution to the 'frame problem'

(see [9 Ch.11]). Each new state can be represented by creating a new object containing

26

the new facts together with the negations of the invalid old facts and inheriting from

the previous state all the facts but those excepted because their negations are present.

Consequently, evolution of a state by successive changes can be represented as a

branch of classes in a hierarchy.

4.6 Inheritance order

If the conflicting axioms are not within classes that belong to the same path in a

hierarchy, but within classes/superclasses of an instance/class that belong to different

paths, the situation is more complicated. In those cases inheritance order should be

also considered.

INHERITANCE

Content
Inheritance

Inheritance
Order

Complete Atomic

consequence
retraction

overriding ordering
startegies

Fig. 6 Inheritance Aspects and Techniques

The order in which an instance/subclass inherits from its classes/superclasses is

very important, as the first occurrence of an axiom overrides all subsequent

conflicting occurrences higher up. In this case, an ordering strategy is required to

define the precedence list of the classes/superclasses of an object. The precedence list

27

lOi
 of an object Oi is an ordered set of the superobjects of the object that determines

the inheritance path to be followed. A superobject of an object Oi is any object higher

up in the hierarchy that belongs to a path from the root to Oi. A breadth-first left-to-

right strategy is used as the default strategy (see next section), to determine the

inheritance path. For example, the default precedence list of m3 in the hierarchy of

Fig.1 is lm3
 = {man, politician, human, mammal, animal, object}.

The inheritance aspects and techniques discussed in Section 4 are depicted in Fig.6.

Cases that cannot be handled by the above techniques are left to the user-definable

component of the inheritance mechanism, discussed in the next section.

5. Inheritance Control Representation

5.1 The need for explicit control

Overriding is used as a general technique for resolving conflicts in SILO. However,

it has some deficiencies. First, it is too difficult to devise general definitions so that be

able to detect all cases of conflicting axioms. Although consequence retraction, the

other general technique, can solve part of the problem by declaring exceptions to

atomic consequences of the axioms, it cannot cover all cases in a natural and/or

efficient way. Also, it cannot handle all types of specialisation.

On the other hand, selection of the inheritance path in cases of multiple inheritance

is not an easy problem. There are several strategies that propose different ways for

solving it [19]. Some of them are general search methods, like depth-first and breadth-

first, which, however, are not adequate. For example, for the cases (a) and (b) in Fig.7,

a breadth-first left-to-right strategy gives the inheritance paths A B C D E and A B C

E D respectively. Only the first is acceptable, since in the second A inherits from E

before it inherits from D (a subclass of E). Also, a depth-first strategy gives the lists A

B D E C and A B E C D. None of them is acceptable, for similar reasons.

There are other methods that result in a linearisation of the hierarchy of an object,

based on a depth-first strategy and some general heuristics like preserving modularity

and local multiplicity [5, 19] that solve the above problems. However, there are still

cases that cannot be satisfied, like case (c) in Fig. 7. In that case, where we want A to

28

inherit first from B and then from C, B to inherit first from D and then from E, and C

to inherit first from E and then from D, those methods fail to produce a path. From the

two possible paths A B C D E and A B C E D none is satisfactory. The first is not

satisfactory when there is conflicting information in C, D and E, while the second

when there is conflicting information in B, D and E.

A A A

B B B

D D

D
E E

E

C C C

(a) (b) (c)

Fig.7 Interesting cases of multiple inheritance

This is mainly due to local domain-dependent irregularities that cannot be captured

by general strategies. Thus, it is unlikely that a single hardwired strategy will be

satisfactory in all cases, both in semantics and efficiency. For the above reasons, local,

explicit and separate representation of control-knowledge is employed in SILO.

5.2 The meta-level model

The advantages of explicit and separate representation of control knowledge have

been pointed out by a number of researchers, e.g. [3, 16]. The most well-known and

advantageous architecture for implementing such a separation is that offered by meta-

level systems [28]. This type of architecture provides a separate object-level and meta-

level interpreter. The object-level interpreter reasons about the domain knowledge,

whereas the meta-level interpreter reasons about how to use the domain knowledge. A

main problem with meta-level systems is the meta-level overhead: the increase in

29

computing cost per object-level step, due to the corresponding meta-level steps, often

exceeds the computational gain due to the reduction of the number of the object-level

steps [28].

A kind of a meta-level architecture based on a partial reflection between object-

level and meta-level is adopted in SILO. This approach suggests a partial reflection

via a set of programmable steps in the object-level computational cycle. At certain

steps in the object-level cycle, the system reflects at the meta-level to make decisions

about the inference strategy used at the object-level. This kind of architecture achieves

a satisfactory balance between flexibility and efficiency [28].

The object-level language of SILO is the integrated language used for the

description of the structure-part and the knowledge-part of an object, described in

Section 3. Its meta-level language, used for description of the control-part of an

object, consists of a number of functions, called meta-functions, which determine

various components of the overall control regime, concerning inheritance and logical

deduction. Thus, we distinguish between inheritance control meta-functions and

deduction control meta-functions that implement programmable steps in the

computational cycle3. A prototype of a SILO's kernel that has been implemented in

CommonLisp [25] provides a number of user-definable Lisp functions for inheritance

and deduction control.

5.3 Inheritance control meta-functions

Determination of the meta-functions for inheritance control is based on a simple

abstract analysis of inheritance control (Fig.8). Two control aspects of inheritance are

distinguished that correspond to the two aspects of inheritance, content inheritance

and inheritance order. This suggests that the system should provide programmable

steps (meta-functions) for controlling both inheritance aspects.

Furthermore, the system should provide the user the capability of defining both

global and local control regimes. Global control refers to inheritance rules to be

3The same idea is used in ACT-P [13], where it is treated in more detail. SILO's deduction control is
based on that introduced in [13].

30

applied to all objects, whereas local control to rules to be applied to a specific object

and its (super)classes. Thus, global regimes cannot take into account local

irregularities, whereas local can. So, as it is clear from Fig.8 (bottom level), meta-

functions are required for the four terminal nodes of the analysis tree. One meta-

function for each node is employed.

inheritance
control

content
inheritance

inheritance
order

global globallocal local

Fig.8 Inheritance Control Analysis

The meta-functions used in SILO for handling content inheritance are: l-inherit-

axioms, for local control of inheritance of axioms, and g-inherit-axioms, for global

control of inheritance of axioms. While g-inherit-axioms is used to specify domain-

independent policies, l-inherit-axioms is used to specify domain-specific ones. For

handling inheritance order, SILO provides the meta-functions l-order-classes and g-

order-classes, for local and global control respectively. By redefining these meta-

functions the user can define his/her own inheritance rules either locally or globally.

Definitions of local activity meta-functions are stored in the control-part of the

objects. Global activity meta-functions are globally defined. The inheritance control

meta-functions are briefly described in the Appendix.

To facilitate definition of the meta-functions, special built-in primitives, called

meta-primitives, are provided that can access object-internal information. A few

examples of meta-primitives are provided in Section 5.5.

31

5.4 Inheritance and reasoning

A reasoning process starts off when a message (theorem) is sent to an object Oc ,

which becomes the current object. Inheritance is closely related to the reasoning

process. It is the means of extending the local theory of the current object when it fails

to prove a theorem (query), while preserving consistency. To preserve consistency,

and in general to resolve conflicts, not all of the axioms higher up are inherited. This

results in nonmonotonic extensions of a local theory and facilitates nonmonotonic

reasoning, which thus is very naturally performed in SILO.

The inheritance principles for detecting conflicting or redundant axioms, specified

in Section 4, are implemented as a number of inheritance rules. We represent by

Fb(Si) and Fu(Si) the action of the built-in and the user-defined inheritance rules on Si

respectively. Each of Fb, Fu takes as input a theory set and gives as output the axioms

that should be inherited, that is pass the filter of the corresponding inheritance rules.

Apart from the current theory set Sc, two auxiliary sets, Sp and Sr, representing the

passed and rejected axioms respectively of the next object Cn in the precedence list lOc

are used. The proof procedure is briefly described below.

(1) Determine the precedence list lOc
.

(2) Set Sc = LOc
 ; start a proof process.

(3) If the theorem is proved from Sc, then check consequence retraction
 in Sc and stop (success).
(4) If lOc

 is empty, stop (failure).
(5) Remove the first element of lOc

 and specify Cn.
(6) Make Sp = Fb(LCn) and Sr = LCn - Fb(LCn).
(7) Make Sp = Fu(Sp) ∪ Fu(Sr) and Sr = (Sr - Fu(Sr)) ∪ (Sp - Fu(Sp))4.

(8) Make Sc = Sc ∪ Sp; set Sp , Sr = ∅; start a new proof process.
(9) Go to step 3.

The steps which the meta-functions are involved in are indicated in the Appendix.

The precedence list LOc
 is computed by the g-order-classes function according to local

arrangements suggested by the l-order-classes functions stored within the superobjects

4All occurrences of Sp and Sr in the right-hand side of both assignments are supposed to represent
their values in (6).

32

of Oc. The meta-primitive get-ordered-sups is fundamental to this purpose. It takes as

arguments an object's name and the theorem to be proved, and returns the superclasses

of the object in an order specified by the user-defined local control meta-function l-

order-classes. As said, the default definitions of g-order-classes and l-order-classes

suggest a breadth-first left-to-right strategy.

The user-defined meta-functions for content inheritance are applied in the order: g-

inherit-axioms , l-inherit-axioms. The arguments of these meta-functions are such that

decisions based on the hardwired rules can be retracted, as it is also clear from the

above described proof procedure. Also, because the query (theorem) to be answered

(proved) is provided as an argument to all of the above functions, problem-specific

rules can be also defined.

5.5 Examples

5.5.1 Breadth-first ordering

To illustrate inheritance control in SILO, some examples are presented. As a first

example, implementation of the default inheritance order strategy of SILO is given.

This is done by defining the meta-functions l-order-classes and g-order-classes as

follows:

; Local control.
; sups represents the classes of Oc in the order specified by the user at creation time.
; theorem represents the theorem (query) to be proved (answered).

(defun l-order-classes (sups theorem)
 sups)

; Global control.
; Top level function

; sups represents the classes of Oc in the order specified by l-order-classes.
; p-list represents lOc

.

(defun g-order-classes (sups theorem)
 (let ((p-list sups))
 (if (member 'object p-list) nil
 (let ((next-sups (order-next-sups p-list theorem)))
 (append p-list (g-order-classes next-sups theorem)))))

33

; Second level function

(defun order-next-sups (p-list theorem)
 (let ((next-sups nil))
 (dolist (sup p-list next-sups)
 (let ((ord-next-sups (get-ordered-sups sup theorem)))
 (setf next-sups (appendnew next-sups ord-next-sups))))))

; Auxiliary function for appending two lists, where duplicates are eliminated.

(defun appendnew (lista listb)
 (let ((new-listb nil))
 (dolist (elem listb (append lista (reverse new-listb)))
 (if (not (member elem lista)) (push elem new-listb)))))

5.5.2 The 'Nixon Diamond' problem

As a second example, we present how SILO can implement various strategies

related to the well-known problem of 'Nixon Diamond' (see e.g. [19 Ch.7, 26]). The

partial hierarchy and knowledge of Fig.95 are considered, where nixon is an instance

of both republican and quaker, and 'behaviour' and 'political-side' are declared as

multi-valued attributes. The question is what is Nixon's behaviour: (behaviour ?x

nixon).

 republican quaker
 ((behaviour warmonger ?self)) ((behaviour pacifist ?self))
 ((polit-side right-side ?self)) ((polit-side unconcerned ?self))

 nixon

Fig.9 The Nixon Diamond Problem

In general, there are two approaches to the problem. According to the skeptical

approach no decision is taken [27]. The question of determining whether Nixon is a

pacifist or a warmonger remains unanswered. This can be easily resulted in SILO by

not allowing either of the slot-axioms to be inherited by nixon, by means of local

control. To this end, the l-inherit-slots is defined, and stored in nixon, as follows:

5 Notice that there are other (non common) instances of republican and quaker, not depicted in the
figure for the sake of simplicity.

34

; n-obj represents Cn, and p-axioms and r-axioms represent Sp and Sr respectively.

 (l-inherit-axioms (n-obj p-axioms r-axioms theorem)
 (remove-if #'(lambda (axiom)
 (and (slot-axiom axiom)
 (eq (get-pred axiom) 'behaviour)))
 p-axioms)),

where slot-axiom is a meta-primitive that checks if an axiom is a slot-axiom, and get-

pred is a meta-primitive that gets the predicate of a unit axiom.

According to the second approach, the credulous approach, both answers are

employed [27]. This can also be easily implemented in SILO. We simply allow for

both axioms to be inherited. This is the default behaviour of SILO.

However, SILO can go further. Suppose that we want to express the fact that Nixon

follows his quakerism as far as his 'behaviour' is concerned, but he follows his

republicanism as far as 'political-side', another of his attributes, is concerned. This

cannot be satisfied by a general strategy as the first requires the order of the classes of

nixon to be {quaker, republican} and the second the reverse. SILO can easily

represent this by defining and storing in nixon the meta-function l-inherit-axioms as

follows:

 (l-inherit-axioms (n-obj p-axioms r-axioms theorem)
 (cond ((eq n-obj 'republican)
 (remove-if #'(lambda (axiom)
 (and (slot-axiom axiom)
 (eq (get-pred axiom) 'behaviour)))
 p-axioms))
 ((eq n-obj 'quaker)
 (remove-if #'(lambda (axiom)
 (and (slot-axiom axiom)
 (eq (get-pred axiom) 'political-side)))
 p-axioms))
 (t p-axioms))))

None of the existing similar systems can offer a solution to this case of the problem.

6. Related Work and Discussion

There are a large number of systems that in some way combine logic and objects

and use the notion of inheritance. Most of them are based on Horn-type logic (being

35

extensions of Prolog-like logic programming), do not use negation, and do not deal

with conflicting information (all answers are acceptable), that is they adopt

unrestricted non-determinism. Thus, their objects are unstructured, that is flat sets of

logical expressions. Furthermore, they approach the combination of logic and objects

from a programming point of view rather than that of knowledge representation, in

contrast to SILO. Thus, their objects model is mostly based on the set theory rather

than the prototype theory [19], hence it is not adequate for knowledge representation.

For the purposes of this paper, we distinguish those systems in two broad categories.

The systems of the first category organise their objects (:sets of clauses) in a graph,

where objects are connected via explicit inheritance relations. They do not necessarily

impose a hierarchical structure on them and do not usually distinguish between classes

and instances. For example, MULTILOG [18] organises its objects (worlds) via three

inheritance relations: full inheritance, inheritance with exceptions, and default

inheritance. Multiple inheritance is allowed. MULTILOG, however, does not use

negation and has no mechanism to deal with atomic inheritance. Also, one cannot

define a variety of combinations of inheritance (specialisation) relations (types)

between objects (axioms) as in SILO. The system in [21] is based on the concept of a

context as an ordered set of theories. A context is dynamically constructed and can be

seen as a branch in a hierarchy. Predicate overriding and predicate extension are

provided, by using explicit means. Also, solution invalidation is introduced, however

it is achieved via extra objects, called constraints objects. This is done more generally,

naturally and efficiently in SILO through consequence retraction and exception by

negation. Moreover, because SILO uses typed terms, a group of atomic forms can be

represented via a single axiom and also a group of solutions can be invalidated via a

single axiom. Finally, multiple inheritance is not treated in [21]. In [20], a graph of

objects is constructed using only two types of inheritance: full inheritance and

overriding inheritance. Multiple inheritance is supported. However, it only deals with

atomic inheritance. Although, default reasoning can be achieved, exception of axioms

cannot be implemented.

36

The second category includes systems that, like SILO, create a hierarchical structure

and usually distinguish between classes and instances. POL [8] realises different

inheritance rules by using explicit declarations for different types of methods, such as

normal, default and deterministic methods. Multiple inheritance is also supported, but

certain specialisation types like knowledge refinement cannot be implemented.

SPOOL [7] has a Flavors-like inheritance mechanism that provides facilities for

method combination, but it is quite inflexible in representing knowledge. The LAP

system [15] uses a fixed depth-first search strategy to order multiple parents of an

object prior to overriding. In CPU [22], inheritance is explicitly expressed as meta-

level knowledge via meta-objects (meta-units). Although this gives a great flexibility,

it creates a high meta-level overhead. Finally, Plog [17] supports full and overriding

inheritance only for classes. Also, multiple inheritance is provided only for classes.

7. Conclusions

In this paper, the inheritance mechanism of SILO is presented; it is an extension of

an earlier work [14]. The mechanism consists of two components, a hardwired and a

user-definable. The hardwired component comprises a number of inheritance rules

dealing with complete inheritance. These rules filter out conflicting or redundant

knowledge. Use of a kind of many-sorted logic for domain knowledge representation

within objects greatly facilitates this task, so that simple, implicit and natural rules are

produced. Axiom overriding is used for this purpose. Moreover, consequence

retraction is used to handle atomic inheritance. Finally, a fixed ordering strategy is

provided to determine the inheritance path.

The user-definable component comprises a number of user-definable functions, the

meta-functions, which deal with complete inheritance and inheritance order. The user,

by locally or globally (re)defining the meta-functions, can implement a variety of

inheritance relations and ordering strategies. In this way, not only domain-specific, but

also problem-specific irregularities can be represented. This gives SILO a great

flexibility in representing specialisations in a hierarchy.

37

Also, since determination of the control components (meta-functions) is based on

an abstract analysis, they are fully programmable and can implement all fundamental

types of specialisation, it is guaranteed that SILO is adequate as far as inheritance is

concerned.

A weak point of SILO's inheritance mechanism is the implicit and procedural nature

of the inheritance rules, that may create some difficulties in realising their use. Also,

the provided meta-functions are quite a few and, although they give great flexibility,

they give no sufficient guidance to the user, mainly as far as inheritance order is

concerned. This is actually the cost paid for its great flexibility. Moreover, the created

code for control knowledge representation may be almost unreadable, due to the

procedural nature of the meta-language, in contrast to a declarative one. A library of

possible strategies would be an improvement to this point.

What SILO does not provide in its inheritance mechanism is the capability of

implementing what is called 'method combination' in the object-oriented parlance [19,

26]. Also, it does not offer any specific constructs for representation of 'part-of'

relations. These are directions for further research on and development of SILO's

inheritance mechanism.

38

Appendix

Inheritance Control Meta-functions

control aspect meta-function

l-inherit-axioms

g-inherit-axioms

content inheritance

arguments

next-object
theorem
passed-axioms
rejected-axioms

next-object
theorem
passed-axioms
rejected-axioms
current-theory

superclasses
theorem

superclasses
theorem

output step
involved

updated
passed-axioms

updated
passed-axioms

superclasses
ordered

precedence
list

7

7

1

1

l-order-classes

g-order-classes

inheritance order

39

References

[1] L. Aiello, C. Cecchi and D. Sartini, Representation and use of metaknowledge,

Proceedings of the IEEE 74 (1986) 1304-1321.

[2] D. G. Bobrow and M. Stefik, The LOOPS Manual: a data and object oriented

programming system for Interlisp, Knowledge-Based VLSI Design Group

Memo KB-VLSI-81-13, Xerox PARC, Palo Alto, California (1983).

[3] W. Clancey, The advantages of abstract control knowledge in expert system

design, Proc. of the 3rd Annual Meeting of the AAAI (1983) 74-78.

[4] A.G. Cohn, Taxonomic reasoning with many-sorted logics, AI Review 3 (1989)

89-128.

[5] R. Ducournau and M. Habib, Masking and conflicts, or to inherit is not to own,

in: M. Lenzerini, D. Nardi and M. Simi, eds., Inheritance Hierarchies in

Knowledge Representation and Programming Languages (John Wiley & Sons,

1991) 223-244.

[6] R. Fikes and T. Kehler, The role of frame-based representation in reasoning,

CACM 28(9) (1985) 904-920.

[7] K. Fukunaga and S. Hirose, An experience with a Prolog-based object-oriented

language, Proc. of the OOPSLA'86, as SIGPLAN Notices 21 (1986) 224-231.

[8] H. Gallaire, Merging objects and logic programming: relational semantics, Proc.

of the AAAI'86 (1986) 754-758.

[9] M. R. Genesereth and N. J. Nilsson, Logical foundations of Artificial

Intelligence (Morgan Kaufmann, 1987).

[10] I. Hatzilygeroudis, IJCAI-91 workshop on objects and artificial intelligence, AI

Magazine 15(2) Summer 1994 (1994) 86-87.

[11] I. Hatzilygeroudis, Knowledge representation and reasoning in a system

integrating logic in objects, Proc. of the 5th IEEE ICTAI (1993) 160-167.

[12] I. Hatzilygeroudis, SILO: Integrating logic in objects for knowledge

representation and reasoning, International Journal on AI Tools 5(4) (1996),

forthcoming.

40

[13] I. Hatzilygeroudis and H. Reichgelt, ACT-P: a configurable theorem-prover,

Data & Knowledge Engineering 12 (1994) 277-296.

[14] I. Hatzilygeroudis and H. Reichgelt, The inheritance mechanism of a system

integrating logic in objects, Proc. of the 6th IEEE ICTAI (1994) 724-727.

[15] H. Iline and H. Kanoui, Extending logic programming to object programming:

the system LAP, Proc. of the 10th IJCAI 1 (1987) 34-39.

[16] P. Jackson, H. Reichgelt and F. van Harmelen, eds., Logic-based Knowledge

Representation (MIT Press, 1989).

[17] M. Jenkins and D. Chester, A combined object-oriented and logic programming

tool for AI, Proc. of the 5th IEEE ICTAI (1993) 152-159.

[18] H. Kauffmann and A. Grumbach, MULTILOG: MULTIple worlds in LOGic

programming, Proc. of the 7th ECAI 1 (1986) 291-305.

[19] G. Masini, A. Napoli, D. Colnet, D. Leonard and K. Tombre, Object Oriented

Languages, The APIC Series (Academic Press, 1991).

[20] F.G. McCabe, Logic and Objects (Prentice Hall, 1992).

[21] P. Mello, Inheritance as combination of Horn clause theories, in: M. Lenzerini,

D. Nardi and M. Simi, eds., Inheritance Hierarchies in Knowledge

Representation and Programming Languages (John Wiley & Sons, 1991).

[22] P. Mello and A. Natali, Objects as communication Prolog units, Proc. of the

ECOOP'87, as LNCS 276 (Springer Verlag, 1987) 181-191.

[23] M. Piff, Discrete Mathematics: An introduction to software engineering

(Cambridge University Press, 1991).

[24] H. Reichgelt, Knowledge representation: an AI perspective (Ablex, 1991).

[25] Guy L. Steele Jr, CommonLISP: The Language (Digital Press, 1984).

[26] M. Stefik and D.G. Bobrow, Object-oriented programming: themes and

variations, AI Magazine 7(4) Winter 1986 (1986) 40-62.

[27] D.S. Touretzky, J.F. Horty and R.H. Thomason, A clash of intuitions: the

current state of nonmonotonic multiple inheritance systems, Proc. of the 10th

IJCAI (1987) 476-482.

41

[28] F. van Harmelen, Meta-level Inference Systems (Pitman, 1991).

