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Abstract 
 

There has been a considerable amount of research into the provision of explicit 
representation of control regimes for resolution-based theorem provers. 
However, most of the existing systems are either not adequate in that they do 
not allow the user  to express any arbitrary control regime, or are too inefficient 
to be of practical use. In this paper a theorem prover, ACT-P, which is adequate 
but retains satisfactory efficiency is presented. It does so by providing a number 
of user-changeable heuristics which are called at specific points during the 
search for a proof. The set of user-changeable heuristics was determined on the 
basis of a classification of the heuristics used by existing resolution-based 
theorem provers. 
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1. Introduction 

Some recent theorem proving systems, like e.g. OTTER [17], try to be more 

flexible than traditional systems as far as control of the proof search is concerned. 

They give the user the capability of participating in the determination of some of the 

components of the control regime to guide the search for a proof. However, they 

offer a hardwired flexibility which, in general, is not adequate. That is, one has a 

predefined number of hardwired choices in changing components of the control 

regime. Also, these systems do not allow to change the main resolution control 

strategy. However, such a choice may lead to a faster solution. 

A type of a system architecture that allows for great flexibility in changing 

control knowledge and could be employed by a theorem prover is that used by meta-
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level systems [1, 26]. Meta-level systems contain, in addition to an explicit 

representation of their domain knowledge, also an explicit representation of their 

control knowledge, knowledge about how to use domain knowledge to solve 

problems. Thus, any meta-level system consists of two levels, the object-level, at 

which the system reasons about the domain, and the meta-level, at which the system 

reasons about how to use the domain knowledge. Because one can explicitly reason 

about the way in which the object-level search space is explored, the hope is that 

one can improve the overall efficiency of the system by making more intelligent 

control decisions. 

A distinction between meta-level architectures can be drawn based on the 

proportion of time spent at each level [26]. At the one end of the spectrum, we have 

object-level inference systems which spend most of their time at the object-level, 

e.g. [8]. Such systems contain a fixed object-level interpreter that looks for meta-

level information at fixed points during its computational cycle. At the other end are 

pure meta-level inference systems. In such systems, computation is primarily done at 

the meta-level. In general, the meta-level contains a description of the object-level 

interpreter and it can use this description to simulate the behaviour of the object-

level. An example is Socrates [6]. 

Pure meta-level systems provide the greatest flexibility. However, experience 

with Socrates clearly demonstrates the cost of this flexibility: unacceptable loss of 

computational efficiency. The reason for this is that the reduction in the object-level 

search space that can be achieved by explicit reasoning at the meta-level is more 

than offset by the time taken by the meta-level. This is called the "meta-level 

overhead problem". Thus, although the control decisions are more intelligent, the 

time taken to arrive at these decisions means that in most cases a less intelligent but 

hardwired control regime would be more efficient. 

In this paper, a meta-level resolution-based theorem proving system, ACT-P (A 

Configurable Theorem-Prover), is described which aims at providing great 

flexibility without leading to an unacceptable loss of efficiency. The basic idea is to 
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make available a skeleton resolution-based theorem prover in which specific steps 

of its computational cycle, corresponding to various components of its control 

regime, are programmable by the user. The programmable steps are implemented as 

user-definable functions1. 

In order to decide what programmable steps to make available, a classification of 

the heuristics used in existing resolution-based  theorem provers was made. The 

hope was that by studying existing theorem provers it would be possible to specify 

the important components of the control regime of a theorem prover. 

The organisation of the paper is as follows. In section 2, our classification of 

existing resolution control heuristics is presented. In section 3, the design and 

implementation of ACT-P is discussed. Section 4 deals with the adequacy of ACT-P. 

Section 5 illustrates how ACT-P can be configured by providing some examples. 

Section 6 discusses related work, and finally section 7 concludes and speculates 

about possible extensions to ACT-P. 

2. A Classification of Resolution Control Heuristics 

We analysed a large number of control regimes used in resolution-based theorem 

provers and constructed a classification of the different types of heuristics 

employed. This was then used in designing ACT-P's computational cycle and in 

determining an adequate set of meta-functions (see next section). Figure 1 presents 

our classification. Each class of heuristics constitute a node of the classification 

tree. In the following, our classification is justified. 

In order to make discussion in this and subsequent sections more comprehensible, 

some terminology is recalled. When the resolution rule is applied to two resolvable 

clauses ϕ and ψ to produce the 'resolvent' χ, then we refer to ϕ as the 'left parent' 

and ψ as the 'right parent' of χ. Also, ϕ and ψ together are referred to as a 

'resolution pair'. 

We distinguish four major classes of heuristics. The first major class, resolution 

restricting strategies, concern the generation of the search space and are used to 
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increase efficiency by restricting the size of the search space. Resolution restricting 

strategies comprise two subtypes, namely parent selection strategies and clause 

elimination strategies. 

 

Parent selection strategies are based on the observation that not all possible 

resolvents have to be constructed to be able to derive the empty clause. They 

therefore impose restrictions on the clauses to be selected for resolution. Parent 

selection strategies have also been called 'refinement strategies' [18] or 'restriction 

strategies' [27]. The criterion for selection can be either clause-based or set-based. 

In the former, the relevant criterion for selection applies to individual clauses. Thus, 

in P1-Resolution [22] one insists that resolution can only be applied if the left 
_______________________ 
2 Denotation of the asterisks is explained in Section 3.2.
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parent is a positive clause. In set-based parent selection strategies, on the other 

hand, one selects the parents from a set of known clauses. For example, in input 

resolution, the left parent must always be an axiom [4]. 

The second type of resolution restricting strategies, clause elimination strategies, 

aim to eliminate clauses that will not be useful in further search. They are also 

called 'simplification strategies' [18] or 'deletion strategies' [9]. We distinguish 

between self-elimination strategies which inspect clauses independently of the other 

clauses in the knowledge base (such as tautology elimination), and inter-elimination 

strategies which inspect the clause in conjunction with other clauses in the 

knowledge base. Examples of the latter are forward and backward subsumption [21]. 

 The second main class of resolution control heuristics, resolution search 

strategies, concern the way the search space is searched. We distinguish between 

general search strategies and resolution ordering strategies. General search 

strategies traverse the search space in a blind way, without taking into account any 

resolution or domain or problem specific knowledge. We further divide general 

search strategies in non-iterative and iterative search strategies. The basis for this 

distinction is whether the strategies require only one generation of the search space 

(non-iterative) or more than one (iterative). The non-iterative strategies include the 

well-known breadth-first and depth-first strategies. An example of an iterative 

strategy is depth-first iterative deepening [13]. 

Unlike general search strategies, resolution ordering strategies, aim to increase 

the efficiency of the theorem proving process by judiciously ordering potential 

resolutions. Clearly, such ordering strategies presuppose some ordering criterion. 

Best-first type strategies belong to this class. We distinguish between two types of 

resolution ordering strategy, based on whether the criterion is clause-based or 

literal-based. An example of the former is unit preference; an example of the latter 

is weighting [27]. 

Whereas resolution search strategies concern the way in which the search space is 

searched, our third main class of heuristics, resolving strategies, concern the way in 
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which resolutions are performed. They are typically used in conjunction with a 

specific parent selection strategy. We draw a distinction between resolving 

preparation and resolving operation strategies. The former concern operations on 

clauses before the actual application of the resolution rule. We further distinguish 

between clause transformation and literal ordering heuristics. The first class are 

needed for resolution strategies that use more complicated representations than 

simple clauses, such as chains used for example in model elimination [15]. Literal 

ordering heuristics are used to order literals in parents prior to resolution. An 

example can be found in [20]. 

Resolving operation heuristics are used during actual resolution. We distinguish 

two classes, namely literal selection and resolvent construction. The former concern 

the number and/or type of literals involved in the resolution. Thus, Prolog will 

always try to find a pair of clauses that only resolve on their first literal. The latter 

concern the way in which parents are merged after resolution. Do we simply append 

the remaining literals of both parents, or do we eliminate redundant literals, as in 

merging [2]? 

The final major class of heuristics, termination heuristics, concern the conditions 

under which search should be terminated. We distinguish between heuristics for 

detecting failure and heuristics for detecting success. Failure heuristics answer the 

question whether a node should be considered a dead end. If there is the situation 

where no further resolutions are possible, then the node is a dead end, but there are 

other reasons why a dead end has been reached. For example, a node is a dead end if 

it unifies with an earlier node on the current path. 

Other failure heuristics prune a particular branch based on the complexity of the 

literals or clauses involved. For example, a literal-based complexity checking 

heuristic may impose a limit on the number of times the same function symbol may 

occur in a term. A clause-based complexity checking heuristic may prune a branch if 

the number of literals in a clause exceeds some limit. 
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A third class of failure heuristics restrict the depth to which a tree is searched. 

We distinguish between those cases where we have a permanent depth limit and 

those where we have a temporary depth limit. In the first case, we never perform 

resolution if it takes us over the limit. In the second case, we will in general first 

perform  those resolutions that stay within the limit. Typically, depth limit 

heuristics are used in conjunction with a depth-first search strategy. 

The second class of termination heuristics, success heuristics, come in two kinds. 

Node-based success heuristics are used to determine whether a node is successful. 

Usually, a node is successful if it contains the empty clause. However, one can 

imagine other possibilities. For example, in model elimination a node succeeds if 

the set of B-literals is empty, independent of the set of A-literals. Process-based 

success criteria are used to control whether search for solutions should be 

exhaustive or not. 

3. The Design and Implementation of ACT-P 

We have designed and implemented a skeleton theorem prover based on the ideas 

discussed in the previous sections, called ACT-P (A Configurable Theorem-Prover). 

ACT-P has been implemented in CommonLisp [24] on a Unix Sun workstation3. On 

the one hand, ACT-P is a resolution-based theorem prover in which the different 

components of its (overall) control regime are (re)definable by the user, via the 

(re)definition of a set of Lisp functions, called meta-functions. 

On the other hand, ACT-P is a logic-based meta-level system based on a partial 

reflective architecture [26]. The system is reflective because it allows one to move 

from the object-level to the meta-level interpreter; it is partial because the overall 

computational cycle of the object-level interpreter is fixed and one can only ascend 

to the meta-level at specific steps in the computational cycle. Thus, the meta-level 

overhead is reduced [26]. ACT-P's object-level language is classical first-order 

predicate calculus (FOPC), whereas its meta-level language is CommonLisp 

enhanced with specially designed primitives, called meta-primitives. 
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3.1 Representation of the search space 

The resolution search space in ACT-P is represented as an OR tree (see fig.2). 

The root (S) of the tree represents the initial state of the problem  to be solved. For 

example, in fig.2 the axioms C1, C2, C3 and the query (theorem) T1, in clausal 

form, constitute the initial state. Each branch of the tree represents a potential 

resolution step and is labelled with the resolvent  to be produced  if the step is 

executed (e.g. R11, R13). Each node of the tree represents the set of clauses after 

the execution of the corresponding resolution step (e.g. S11= S U {R1}). The 

branches from a parent node to its child nodes represent the (new) potential 

resolutions due to the resolvent from which the parent node was produced (e.g. R11, 

R12 are the potential resolvents from S11 due to resolutions of R1 in S11). 

 

 

A path from the root to a leaf is a sequence of states (sets of clauses). In a 

solution path, the last sequent contains a solution clause (in most strategies the 

empty clause). In the actual implementation, we only keep a record of the produced 

resolvents, after the initial state, so that a solution path is a sequence  of clauses 

(resolvents) in which the last sequent  is a solution clause. 

Also, information about a potential resolution step (branch) from a state (node) is 

stored in a step point. A step point is a 7-tuple, < p1, p2, l1, l2, s1, s2, d >, that 
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keeps information about a resolution step consisting of the left parent clause (p1), 

the right parent clause (p2), the literal(s) in the left parent that resolve (l1), the 

literal(s) in the right parent that resolve (l2), the substitution to be produced from 

the resolution of p1 and p2 (s1), the substitutions produced up to this point (s2), and 

the depth in the proof tree (d). We store pointers in a step point rather than the 

actual copies of the elements to improve space efficiency. The actual elements are 

retrieved from the knowledge base (see section 3.3) via an indexing mechanism. 

3.2 The choice of the meta-functions 

The classification presented in the previous section was the base for constructing 

the computational cycle of ACT-P. First, it guided us to incorporate all the 

necessary control components in it (see next subsection). Second, the decision of 

exactly which programmable steps (hence meta-functions) in the computational 

cycle should be made available to the user was based on it. 

The first question that we faced in this decision was what level of abstraction in 

the classification we should make available for change. There are a number of trade-

offs here. For example, if we were to choose classes of heuristics (nodes) that are 

lower on the classification tree, then corresponding steps in the computational cycle 

will be smaller and easier to program. Also, because the overall computational cycle 

will be more tightly structured, the system will be more efficient. On the other hand, 

there will be more steps to be specified, and this will increase the complexity of the 

system. Also, the system will be less flexible, since the programmable steps will be 

smaller and less abstract. Hence, there is a fundamental trade-off here between the 

number of the steps (functions) and their width (size), or in other words between 

efficiency and flexibility. 

On the basis of the above considerations, we distilled the following principles to 

guide us in the choice of the appropriate programmable steps (meta-functions): 

1.Avoid programmable steps corresponding to leaves in the 

classification tree. 
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2.If adding a step corresponding to a node results in inefficient code, 

then provide programmable steps corresponding to its children. 

3.If adding steps corresponding to sibling nodes results in low 

flexibility, then provide a programmable step corresponding to 

their parent. 

These principles led us to provide programmable steps for the classes of heuristics 

marked with an asterisk in fig.1. 

Another question that we faced, regarding the above decision, concerned the  

number and the size of the steps (functions) needed to represent each of the selected 

nodes. There are a number of points here. First, not every node can be represented 

by just one meta-function since the corresponding heuristics may act in more than 

one point in the computational cycle. Parent selection strategies provide such an 

example (see Appendix, table 1.1). On the other hand, some of the heuristics, 

although they correspond to different nodes, are of the same nature and thus can be 

unified in the same programmable step. This is the case e.g. for resolution ordering, 

depth limit and non-iterative search strategies, which are represented by the same  

meta-function (see Appendix, table 1.1). 

Also, because ACT-P's proof procedure consists of two stages (see next 

subsection), ACT-P provides two different meta-functions for several of the classes 

of heuristics, one of which is called in the first stage, the other in the second stage. 

Additionally, there are strategies that suggest use of different heuristics for left and 

right parents. ACT-P therefore provides two different meta-functions for heuristics 

that operates on the parents of a resolvent. Furthermore, one of the meta-functions 

has been reduced to just a global variable, called a meta-variable, because almost all 

of its action is hardwired. This is the case for the iterative search strategies. 

Finally, apart from binary resolution [21], ACT-P offers two other inference 

rules, namely factoring and multiliteral resolution, mainly to assure completeness of 

the resolution refutation. Thus, two meta-functions and one meta-variable are 

provided for this purpose (see Appendix, table 1.2). For a brief description of all 

ACT-P's meta-functions and meta-variables see the Appendix. 
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In addition to the meta-functions, ACT-P also provides a number of auxiliary 

functions, the meta-primitives, which are intended to facilitate writing meta-

functions. Thus, there are meta-primitives for testing a literal or performing simple 

operations on a literal. Likewise, there are a number of meta-primitives for testing 

properties of or performing operations on clauses. Finally, there are meta-primitives 

for getting at the various elements in a step point. For the use of a few of the meta-

primitives see in the examples section. For a fuller description of the meta-functions 

and the meta-primitives, the reader is referred to [12]. 

3.3 The proof procedure 

Logical formulas are introduced in the system via the primitive function 'store-

assertions', which takes as arguments any number of FOPC formulas in Cambridge 

Polish notation with as connectives {~ , & , V , =>} and quantifiers {forall , exists}. 

The formulas are automatically transformed into clausal form and stored in the 

knowledge base as axioms. The knowledge base is a set (Skb) containing, at any 

time in a proof process, all the clauses (axioms and produced resolvents) involved in 

the process up to that time. In order to prove some goal, the primitive function 'act-

prove' is used, which takes as argument the query (theorem) to be answered 

(proved). 

The active clauses from the knowledge base (i.e. those not excluded from the 

process for some reason), at any time, are distributed between two (possibly 

overlapping) sets, the left parents (Slp) and the right parents (Srp). These sets 

contain the potential left and right parent clauses. Their actual elements are pointers 

to the knowledge base rather than the clauses themselves. Each new resolvent is 

tried to be resolved with the clauses in one of the two sets, depending on the parent 

selection strategy followed. 

The agenda is an ordered set of step points, that is a set containing, at any time, 

all potential resolutions in an order. Order is specified by the meta-function 



12 

'combine-points'. The solution stack is a set containing, at any time, the solutions 

already found. A solution is a set of variable bindings.  

We distinguish two stages in the proof procedure, the preparation stage and the 

main proof cycle. This distinction is necessary because some resolution-based 

control regimes act in two stages. For example, in linear input resolution, we 

initially want to produce all possible resolutions. However, subsequently we only 

produce resolutions that have as their left parent the most recent resolvent, and as 

their right parent one of the initial axioms. 

The computational cycle of ACT-P can be described by the following steps. 

Preparation stage 
1.Filter Skb 

2.Select (initial) Slp and Srp 

3.Prepare Slp and Srp 

4.Find resolution pairs between Slp and Srp 

5.Make step points and put them on the agenda 

6.Order the agenda 

7.Store the initial state and (re)select Slp and Srp  

Main proof cycle 
8.If the termination condition is satisfied, return the contents of the 

solution stack  

9.Produce the resolvent specified by the first step point on the agenda 
whose neither parent has been eliminated, then prune the point 

10.If the resolvent is a solution clause, store corresponding solution on 
the solution stack and go to step 8  

11.If iterative search is used and current situation fulfils the iteration 
condition, reset agenda, Slp, Srp and Skb to the initial state, then 
go to step 8  

12.If the resolvent is to be eliminated or does not pass the complexity 
test(s), go to step 8 

13.If the resolvent leads to an infinite path, go to step 8  

14.Find the new resolution pairs due to the produced resolvent  

15.Make the new step points and add them to the agenda 

16.(Re)order agenda  

17.Update Skb, Slp, Srp, with the produced resolvent  

18.go to step 8 
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Which meta-function(s) is(are) involved in which step(s) is illustrated in the 

Appendix. 

4. Adequacy of ACT-P 

The question that dogs any partial reflective architecture is how one can be sure 

that the programmable steps are adequate in the sense that a sufficient number of 

different control regimes can be expressed by reconfiguring the basic skeleton 

interpreter. 

One way of ensuring the adequacy of a system of this kind is by providing an 

abstract analysis of meta-level systems, as van Harmelen [26] does. He argues that 

in any logic-based meta-level system, one needs three sets of heuristics as far as the 

search strategy is concerned: a) a set of "generative" heuristics, which determine 

which part of the theoretically possible search space will actually be generated, b) a 

set of "directional" heuristics, for determining how the generated space should be 

traversed, and c) a set of "termination" heuristics, for determining under what 

conditions the search along a branch can be terminated with either success or 

failure. Since van Harmelen's partial reflective interpreter provides hooks for each 

of those sets of heuristics, he thus has an abstract argument for the adequacy of his 

system. 

We adopted a more empirical approach. Rather than provide an abstract analysis 

of resolution-based theorem provers, we have analysed a large number of such 

systems to determine classes (types) of heuristics. Since resolution is the oldest and 

probably still most widely used theorem proving technique, a significant portion of 

the space of possible control regimes for such theorem provers has been 

investigated. A classification of the types of heuristics that have been employed 

therefore provides a clear and adequate indication of the programmable steps that 

need to be incorporated in the computational cycle. 

Comparing our analysis to that of van Harmelen's, we notice the following 

correspondences. Our resolution restricting and resolving strategies are roughly 
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equivalent to his generative heuristics. What we call resolution search strategies 

largely correspond to his directional heuristics. Finally, our termination heuristics 

are almost identical to his. However, our analysis is more fine-grained and thus 

results in a system of finer granularity as far as configurability is concerned. 

We can summarise our arguments for adequacy of ACT-P as follows: 

1.We have identified all the necessary control components of a resolution-
based theorem prover via our systematic classification of the types of a 
large number of resolution control heuristics. 

2.All those components are present in the computational cycle of ACT-P 
as programmable steps, so that the user has access to almost all 
information about the control regime used in the proof procedure. 

3.All those components are fully programmable; the full power of 
CommonLisp is available for that purpose. 

5. Example Configurations 

In order to give a flavour of the way in which ACT-P can be configured, in this 

section we discuss how certain resolution control regimes can be realised in ACT-P. 

ACT-P contains simple default definitions for the meta-functions, which are called 

if the user does not redefine (override) them. 

5.1 The basic Prolog prover 

Prolog uses SLD-resolution as its (overall) control regime. In SLD-resolution the 

left parent in a resolution pair is always the most recently produced resolvent and 

the right parent is an axiom. Prolog starts off with the goal (theorem) to be proved 

as the initial left parent. 

In the preparation stage, initially the sets of the left and right parents are 

determined: 
 
(defun select-init-l-parents (theorems axioms) 
 theorems) 
 
(defun select-init-r-parents (theorems axioms) 
 axioms) 
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Then, all possible resolutions are produced. Prolog uses binary resolution. Thus, 

the meta-functions used to determine whether we use any other rule are left 

unchanged (default behaviour). 

Prolog always only try to resolve the first literal in a left parent with the positive 

literal of the axiom (a Horn clause). This is the literal selection strategy of Prolog. 

We implement it in ACT-P as follows: 
 
(defun select-l-literals (l-parent)  
 (list (car l-parent))) 
  
(defun select-r-literals (r-parent)  
 (remove-if-not #'positive-literal r-parent)) 

where 'positive-literal' is an ACT-P meta-primitive. 

The resolution pairs produced in this way are used to produce corresponding step 

points that are put on the agenda. Just before entering the main proof cycle, the left 

and right parents are reset. Because left parents always have to be resolvents , and 

there are no resolvents produced during the preparation stage, the left parents are set 

to 'nil', while the right parents are left unchanged: 
 
(defun select-l-parents (init-l-parents  theorems axioms) 
 nil) 
  
(defun select-r-parents (init-r-parents theorems axioms)    
 init-r-parents) 

We now enter the main proof cycle. The way in which Prolog constructs 

resolvents is straightforward. We simply append the remaining literals in the axioms 

to the front of the remaining literals in the left parent: 

 
(defun construct-resolvent (l-parent r-parent l-lits r-lits binds) 
 (apply-substs 
  (append (remove-literals r-parent r-lits)   
    (remove-literals l-parent l-lits)) 
  binds)) 

where 'apply-substs' and 'remove-literals' are meta-primitives. 

Prolog uses the default check for determining whether a node is successful, 

namely that the produced resolvent be the empty clause. We therefore do not need to 
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change the meta-function 'solution-node'. Similarly, the default behaviour is 

sufficient for determining whether the process is to be terminated: a solution is 

found or there are no further resolutions to be produced. Thus, the default definition 

of the meta-function 'termination-condition' does not have to be changed. For 

completeness sake, we repeat those definitions here: 
 
(defun solution-node (resolvent) 
 (null resolvent)) 
 
(defun termination-condition (back-points solutions theorems) 
 (or (= (length solutions) 1) 
  (null back-points))) 

The new produced resolvent is used for generating further resolution pairs. 

However, we only want to resolve the new resolvent against axioms, i.e. right 

parents. We redefine the following functions: 
 
(defun resolve-with-l-parents (resolvent step-point) 
 nil) 
 
(defun resolve-with-r-parents (resolvent step-point) 
 t) 

The step points produced in this way need to be added to the agenda. Prolog uses 

a depth-first search with backtracking on failure. In order to produce this behaviour, 

we insist that the (new) step points are always added to the front of the agenda: 
 
(defun combine-points (new-points old-points) 
 (append new-points old-points)) 

Backtracking is performed automatically by ACT-P. 

Finally, the left and right parents never need to be updated. Thus, we simply have 

the following definitions: 
 
(defun update-l-parents (resolvent l-parents step-point) 
 l-parents) 
 
(defun update-r-parents (resolvent r-parents step-point) 
 r-parents) 

5.2 Adding more control 
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The above configuration of ACT-P gives the implementation of the basic Prolog 

system. However, one can add other control facilities, for example like those used in 

IC-Prolog [5] or in MRS [11]. IC-Prolog uses control annotations to specify the 

order of the literals in the body of a Horn-clause depending on the query. The same 

is done in MRS via the use of control clauses. 

For example, the ACT-P axiom (where symbols starting with a '?' are variables) 
 
(=> (& (parent ?x ?y) (parent ?y ?z)) 
 (grandparent ?x ?z)) 

is represented in IC-Prolog as 
 
[ (=> (& (parent x y) (parent y z)) 
 (grandparent x? z)) 
  (=> (& (parent y z) (parent x y)) 
 (grandparent x^ z?)) ] 

where the symbols '?' and '^' after a variable are used as control annotations. In this 

case, if  x is bound to a constant, the first form of the axiom is used, whereas if z is 

bound to a constant, the second. 

In MRS, this is achieved via the following control clauses 
 
(=> (Better p1 p2) 
 (Before (R p1 q1 r1) (R p2 q2 r2))) 
 
(=> (& (Const u) (Var v) (Var x) (Var y)) 
 (Better (Parent  u v) (Parent x y))) 
 
(=> (& (Var u) (Const v) (Var x) (Var y)) 
 (Better (Parent u v) (Parent x y))) 

where 'Before', 'Better', 'Var', 'Const' are built-in primitives, and 'R' represents the 

action of resolving two clauses p and q to produce a new clause r. 

In ACT-P this can also be relatively easily and more generally implemented by 

redefining the 'construct-resolvent' meta-function as  
 
(defun construct-resolvent (l-par r-par l-lits r-lits binds) 
 (append (re-order-literals  
       (apply-substs (remove-literals r-par r-lits)  binds)) 
  (apply-substs (remove-literals l-par l-lits)  binds))) 
 
(defun re-order-literals (r-par) 
 (if (null r-par) nil 
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   (let* ((init-lit (car r-par)) 
  (s-lit (select-best init-lit (cdr r-par))) 
  (rest-par (remove-literals r-par (list s-lit)))) 
 (cons s-lit (re-order-literals rest-par))))) 
  
(defun select-best (init-lit rest-par) 
 (if (null rest-par) init-lit 
   (let ((next-lit (car rest-par))) 
  (if (less-vars init-lit next-lit) 
  (select-best init-lit (cdr rest-par)) 
  (select-best next-lit (cdr rest-par)))))) 
 
(defun less-vars (lit1 lit2) 
 (let*  ((terms1 (get-arguments lit1)) 
  (terms2 (get-arguments lit2)) 
  (vars1 (length (remove-if-not #'var terms1))) 
  (vars2 (length (remove-if-not #'var terms2)))) 
  (< vars1 vars2))) 
 

where 'get-arguments'  and  'var' are built-in primitives. 

This implementation in ACT-P is more general than those in IC-Prolog and MRS, 

because in IC-Prolog and MRS one has to write as many control statements as the 

predicates which one wishes to control. In ACT-P, the above configuration is 

adequate for all similar cases. However, the disadvantage of ACT-P's approach is 

that the required code is less readable than the MRS and IC-Prolog code. This is due 

to the procedural nature of ACT-P's meta-language. 

5.3 Subsumption 

Subsumption is a vital, but computationally expensive, clause elimination strategy 

used in theorem proving. A clause C subsumes a clause D if there is a substitution θ 

such that Cθ ⊆ D. There are two forms of subsumption, forward subsumption and 

backward subsumption. In forward subsumption a newly derived clause (resolvent) 

is eliminated if it is subsumed by an already existing clause. In backward 

subsumption an already existing clause is eliminated if it is subsumed by a newly 

derived clause. 

The meta-function for implementation of clause elimination strategies is 'check-

resolvent'. To implement forward subsumption it is redefined as follows. 

(defun check-resolvent (resolvent clauses) 
 (for-subsumes resolvent clauses)) 
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(defun for-subsumes (resolvent clauses) 
 (dolist (clause clauses resolvent) 
  (if (subsumes clause resolvent) (return nil)))) 
 

where the function 'subsumes' needs to be further defined. To this end, 'unify-

literals' is a very useful meta-primitive, which takes as arguments two literals and 

returns the variable bindings (substitution), if the literals unify, and 'nil', otherwise. 

To implement backward subsumption the 'check-resolvent' meta-function is 

redefined as follows. 
 

(defun check-resolvent (resolvent clauses) 
 (back-subsumes resolvent clauses)) 
 
(defun back-subsumes (resolvent clauses) 
 (dolist (clause clauses resolvent) 
  (if (subsumes resolvent clause) 
     (remove-par-clause clause)))) 
 

where 'remove-par-clause' is a meta-primitive which removes 'clause' from the 

knowledge base. 

If both forms of subsumption are to be used, then elimination by forward 

subsumption should be first tested. In this case, the above meta-function should be 

redefined as follows. 
 

(defun check-resolvent (resolvent clauses) 
 (back-subsumes (for-subsumes resolvent clauses) clauses)) 

6. Related Work 

There are a number of logic-based systems that like ACT-P try to be more 

flexible. A first category includes resolution-based theorem provers like those 

developed by the Argonne group, e.g. LMA/ITP [16], AURA [23] and OTTER [17]. 

These are very different systems from ACT-P. 

The OTTER system, for example, provides a number of hardwired inference rules 

(binary resolution, factoring, hyperresolution, UR-resolution and binary 

paramodulation), as well as a number of other hardwired search control choices, but 

has a fixed parent selection strategy (a kind of set of support strategy). In contrast, 
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ACT-P provides a limited number of hardwired inference rules (binary resolution, 

factoring, multiliteral resolution), but offers a great variety of user-defined 

resolution control strategies. In OTTER users have to choose among a predefined 

number of control choices, whereas in ACT-P they can themselves define a great 

variety of controls. So, OTTER offers less flexibility, but because more is 

hardwired, greater efficiency than ACT-P. 

A second category includes logic-based systems that can be characterised as meta-

level systems. At the one end of the spectrum we find systems like Socrates [6], a 

highly flexible system. The user can change not only the inference rules and the 

control regime, but the representation language as well. However, the cost for this 

high flexibility is an unacceptable loss in efficiency due to the enormous meta-level 

overhead [6]. 

At the other end, there are systems that provide the user with a number of specific 

predicates which can be used to change the behaviour of the theorem prover. 

Examples of such systems include Gallaire and Lasserre's Prolog-based system [8] 

and MRS [10]. They typically require writing a meta-program alongside the object-

program and offer low flexibility. For example, Gallaire and Lasserre's system uses 

a fixed resolution search strategy (that of Prolog), and is thus restricted to Horn-

clauses, but allows the user to change the way in which literals and clauses are 

ordered prior to resolution, or the way in which dead ends are detected. 

In between the above ends, there are systems that are more related to ACT-P. 

MOL [7] provides programmable steps implemented as redefinable predicates and is 

an extension of Gallaire and Lasserre's system by additionally allowing control of 

the backtracking strategy. van Harmelen's partial reflection system [26] (PRS 

hereafter) is an extension to MOL in two respects. First, PRS allows the user to 

change the termination criteria. Second, PRS is no longer restricted to Horn-clauses, 

but has in fact been parameterised with respect to the object-level language. Finally, 

FRAPPS [25] is a resolution-based system that allows the user to specify a wide 

range of control strategies via redefinable Lisp functions. 
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However, ACT-P differs in a number of respects from these systems. A first 

difference concerns the generality of the systems. MOL is restricted to Horn-clause 

logic. ACT-P does not suffer from this restriction. Moreover, ACT-P allows one to 

change the basic resolution strategy (the parent selection strategy), whereas MOL is 

restricted to Prolog-type binary linear input resolution.  However, ACT-P is less 

general than PRS, as PRS is parameterised with respect to the object-level language, 

and can therefore be used for other logics than FOPC and for other proof theories 

than resolution refutation. Finally, FRAPPS and ACT-P offer comparable levels of 

generality. 

A common feature of MOL, PRS and FRAPPS is that all use an explicit 

representation of the object-level proof tree. Thus, they have to store explicitly the 

open goals for every node. ACT-P uses an implicit representation. This allows for a 

more efficient, but less flexible, implementation of the proof procedure in ACT-P. 

The set of meta-functions of ACT-P is very different from the set of redefinable 

predicates of PRS. As far as directional and termination heuristics are concerned 

(see section 4), PRS' meta-predicates are broadly comparable to ACT-P's  meta-

functions, although ACT-P's are slightly more specific. However, the most striking 

difference between PRS' predicates and ACT-P's functions concerns the generative 

heuristics. ACT-P offers an appreciably larger number of meta-functions, because it 

is based on a more specific analysis than PRS. This means that ACT-P has a larger 

number of programmable steps, which in general correspond to smaller step widths. 

Hence, ACT-P has a more strictly structured computational cycle. This has two 

consequences. First, it is much more complex to implement resolution-based 

systems in PRS. Second, ACT-P is more efficient for resolution-based systems. 

FRAPPS and ACT-P are very similar systems in that both provide a number of 

user definable Lisp functions to specify a variety of resolution control strategies. 

However, in FRAPPS, as in PRS, the user constructs its own proof procedure using 

the offered functions, whereas in ACT-P there is a fixed skeleton of the proof 

procedure and there are certain steps that can be specified by the user. Although this 
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makes FRAPPS more flexible, it may lead to inefficiency. Also, because FRAPPS is 

not based on a systematic analysis, there is no argument given about its adequacy. 

So, it seems not to provide any functions for implementing resolving strategies and 

success heuristics. FRAPPS uses the notions of 'priority queue' and 'derivation 

graph'. The former is similar to ACT-P's 'agenda'. However, ACT-P uses the 'left 

parents' and 'right parents' instead of 'derivation graph'. This, although lacks some of 

the flexibility of directly manipulating the proof tree, results in higher efficiency, 

because the produced resolvent is tried for new resolution pairs with either the left 

or the right parents, and not with all parents as in FRAPPS. 

7. Conclusions 

In this paper, ACT-P, a configurable theorem prover, which attempts to combine 

the flexibility afforded by meta-level systems with acceptable efficiency4, has been 

discussed. ACT-P is an example of a partial reflection architecture. It makes 

available a number of user-definable functions that are called at specific points 

during its computational cycle. As a result, the meta-level overhead is kept within 

acceptable bounds. Also, given that the meta-language of ACT-P is the same as its 

implementation language, redefinition of the meta-functions overrides their default 

definitions without any significant loss in efficiency, since no extra interpretation is 

required. 

To assure adequacy of ACT-P, we analysed a large number of control regimes 

used in resolution-based theorem provers and classified the types of the various 

heuristics employed in a way that guided us in deciding which steps should be made 

programmable. The fact that ACT-P's meta-functions are closely related to that 

classification suggests that ACT-P is indeed adequate. 

ACT-P offers great flexibility in incorporating heuristics involved in resolution-

based proofs. Various well-known general search strategies such as breadth-first, 

depth-first, best-first and their variants, various resolving techniques, and the 

majority of existing resolution search strategies as well as their combinations can be 
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implemented in ACT-P. Also, because of its flexibility, ACT-P allows the user to 

define a great variety of problem specific heuristics to be taken into account during 

the proof procedure. 

Thus, ACT-P can be used as the basis of a tool for testing various strategies under 

a uniform implementation environment, to see their behaviour and suitability in 

different kinds of problems. In this respect, a library of different meta-functions 

definitions implementing various heuristics would be useful. Furthermore, an 

extension to ACT-P that would automatically choose the most promising heuristic, 

would  be very interesting. 

A weak point of ACT-P's present implementation is due to the fact that in ACT-P 

all potential resolution pairs from a node in the search space are first found and 

stored (as step points). It is only after this that the actual resolution takes place to 

see if any of them leads to a solution. Thus, although an early pair may lead to a 

solution, all the other pairs have to be found and stored, whereas in a hardwired 

approach the first resolution pair found is resolved, then the next, and so on. If the 

current pair leads to a solution, the remaining potential pairs need not to be found. 

This is actually the price paid for the great flexibility. 

Also, ACT-P provides only a limited number of inference rules. Thus, another 

extension could be the provision of multi-clause resolution rules, such as 

hyperresolution and Unit-Resulting resolution, as well as rules concerning equality, 

such as demodulation and paramodulation [27]. 

Finally, another weak point of ACT-P that needs further work is due to the fact 

that ACT-P offers no direct constructs for attaching information to literals and 

terms. Thus, ACT-P can incorporate strategies like Lock resolution [3] and  

Connection  graphs [14] only with great difficulty, if at all. 
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